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Abstract

This is a numerical study of ADI schemes applied to problems in finance. The
work carried out centers on the Heston stochastic volatility model, which gained
its popularity from the existence of closed form solutions. A detailed outline of
the analytical procedure for applying the Fourier transform method is presented.

ADI schemes Douglas-Rachford, Craig-Sneyd (CS), modified CS and
Hundsdorfer-Verwer are studied in detail and the numerics are implemented in

Matlab. The option sensitivities (Greeks) are also introduced in theory and some
are briefly studied via their closed form solution and finite difference method.
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Chapter 1

Introduction

The existence of a curved implied volatility surface has led to a rise in the pop-
ularity of the use of stochastic volatility (SV) models in derivatives pricing and
hedging. This phenomenon has highlighted a fundamental drawback of the classic
Black-Scholes model; the assumption of constant volatility. In place of the Black-
Scholes model, many SV alternatives have been proposed (e.g. Stein and Stein,
SABR Heston, Hull and White models). Amongst them, one of the most promi-
nent and widely used is the Heston model. Part of its popularity can be attributed
to the availability of a semi-analytical solution [24] in the case of European options,
which allows not only for the ability to extensively test numerical methods, but
also for calibration of model (see for example [36]). A model that sits closely to the
Heston model is the 3/2 model, although the Heston model remains more popular
and widely used.

Derivatives pricing via the Heston model can be done via the corresponding par-
tial differential equation (PDE) or via simulation techniques such as Monte Carlo
(MC) methods. MC methods require numerical integration of stochastic differ-
ential equations (SDEs). As such, they use simulation methods to approximate
integrals in the form of expectations. As this requires generating random vari-
ables, MC methods are computationally expensive. For this reason, they are more
attractive to use when dealing with four or more dimensions. If the problem at
hand has three or less dimensions, finite difference methods (FDM) tend to be used
instead. With this in mind, as the Heston is a two-dimensional model, alternating
direction implicit (ADI) methods are studied. ADI schemes were initially used for
problems in fluid mechanics. The vast majority of problems arising in finance can
be modeled in terms of parabolic PDEs. It is the existence of fast numerical PDE
schemes which motivates the use and attractive features of techniques from the
fluid dynamics arena to solving problems in the field of quantitative finance. ADI
methods employed in multi-factor modeling has proved particularly powerful.

The implementation developed is based on a European call option and focuses
on the performance of different ADI methods. The key idea is to clearly introduce
concepts which will aid the understanding of the need of ADI schemes and motivate
the use of SV models and in particular the Heston model. The dissertation is also
intended to provide a solid understanding of the implementation of ADI methods,
which is not easy to grasp.

9



Chapter 2

General Review

2.1 Motivation

Suppose we use the standard deviation of... possible future returns on a stock... as a
measure of its volatility. Is it reasonable to take that volatility as constant over time? I
think not.

—Fischer Black, 1973

The Black-Scholes model of 1973 [3] has provided an essential foundation, which
has served as the building blocks of financial engineering over the past forty years.
Used to price derivative securities, the purpose of the Black-Scholes model was to
form a risk-neutral instrument that could be perfectly hedged against volatility in
markets. In their formative paper [3], Black and Scholes derive the pricing partial
differential equation (PDE) that governs the price of a security over time. The
central idea behind their method was that of constructing a portfolio in which a
long position in one option could be hedged by a short position in ∆ amount of
the underlying. This strategy is also referred to as delta hedging.

However, it has been accepted since by both academics and practitioners, that
certain ideal assumptions of the model do not conform with features observed
in equity markets. Many papers highlight the weaknesses and limitations of the
Black-Scholes model (see for example Haug and Taleb [23]). In this discussion, we
concern ourselves with the distributional implications of the Black-Scholes model,
although there are further simplifications which have also been criticized.

We remark that one of the most pre-eminent observations is the inability of the
Gaussian distribution assumed for log-returns to capture extreme events charac-
terized by the large tails of actual market data distributions. This distributional
result is a consequence of modeling asset price dynamics as geometric Brownian
Motion (GBM). Contradicting evidence (see for example Gatheral [21] and Man-
delbrot [33]) is given by empirical studies which have shown that in practice, the
probability density function (PDF) is characterized by a slower decay of tails than
the log-normal density predicts (‘fat-tails’ effect) and high peaks (higher kurtosis,
known as Leptokurtic).

10



Chapter 2: General Review

A further critical assumption of the Black-Scholes model is that volatility is as-
sumed known and constant over time. Firstly, there is empirical evidence for the
tendency of equity returns to be negatively correlated with volatility (known as
the ‘Leverage Effect’) where typically, declines in stock prices are accompanied
by an increase in volatility rather than declines in volatility leading to a rise in
stock prices. Intuitively this makes sense as drops in asset price would cause an
institution to become more leveraged, stock becomes riskier and thus volatility
rises. Secondly, the fact that the distribution of stock price returns is fat-tailed
and highly peaked indicates a mixture of distributions with different variance (see
Kwok [29]). If we plot asset price returns (or log-returns) of actual equity data
we often observe the ‘volatility-clustering’ feature (see Gatheral [21]) which reflects
the mean-reversion property of the variance process. These observations have led
to the notion of random volatility and incorporation of jumps (we can introduce
jumps by relaxing the continuity assumption of the Black-Scholes model). In this
dissertation, we concern ourselves with the former of the two notions.

2.1.1 Volatility

The Black-Scholes pricing framework gives rise to option prices that are functions
of the input parameters: stock price S, strike price K, risk-free interest rate r,
maturity T , current time t and volatility σ. Of these five parameters, σ is the only
quantity which is not directly observable. It represents a measure of the uncertainty
of asset returns. The difficulties arising in valuing σ are a result of the fact that
the value the parameter takes should be the forecast value over the time left until
expiration of the option rather than and estimate from past market data (such
estimate is known as historical or realized volatility) [29].

Given an observed European call option price Cobs(S, t;K,T ) for an option contract
with strike K and maturity T , the implied volatility σimp is defined as the value of
the volatility parameter that must go into the Black-Scholes formula [3]

CBS(S, t;K,T, σ) = StN(d1)−Ke−r(T−t)N(d2),

where

d1 =
ln(St

K
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and

d2 =
ln(St

K
) + (r − 1

2
σ2)(T − t)

σ
√
T − t

with

N(x) =
1

2π

∫ x

−∞
e−

1
2
z2 dz,

to match this price
CBS(S, t;K,T, σimp) = Cobs.

We pause to observe that1

1For further details see Fouque et al. [19].
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(1) Noticing that the vega of a European call option is positive

∂CBS

∂σ
=
Se−

d21
2

√
T − t√

2π
> 0,

we can always find a unique positive implied volatility σimp given Cobs >
CBS(S, t;K,T ) due to the monotonicity of the Black-Scholes formula in the
volatility parameter σ.

(2) The implied volatility σimp of European call and put options with the same
strike K and maturity T are the same because of put-call parity2.

Implied volatility can be seen as the market’s expected future volatility between
the present time t and the maturity T of a given option. In particular, we can
seek an extensive market perspective by observing several implied volatility values
obtained simultaneously from options with differing strike and maturity values
written on the same underlying security (such a plot gives the term structure of
implied volatility). This could be useful to traders who often quote the implied
volatility of an option as opposed to its price. The advantage and convenience of
doing this is due to the lesser variability in implied volatility than an option price.

One may use implied volatilities to provide further evidence against constant volatil-
ity in the Black-Scholes model. Suppose we observe market prices for several Eu-
ropean call options with the same maturity written on a common underlying asset.
If the assumptions made in the Black-Scholes model were a true representation
of the market then we should see flat implied volatilities (i.e. a plot of strike or
moneyness3 against implied volatility would yield a flat horizontal line). Instead,
one normally sees a volatility ‘smile’ where implied volatility is higher at either
side of at-the-money (ATM) (i.e. when the spot and strike price are the same).
The existence of a smile is evidence that the market prices at a premium out-of-
the-money (OTM) (i.e. when the spot exceeds the strike in the case of a put and
strike exceeds spot in case of a call) puts and in-the-money (ITM) (i.e. opposite of
OTM) calls. By contrast, in a ‘Black-Scholes world’ unless volatility is increased a
lot, chances of ending up ITM are a rare event. In this case, the log-normal model
underestimates the probability of large movements in the underlying.

In practice we often observe a ‘smirk’ (a reverse skew, asymmetry of the distribu-
tion). This is because underpricing of OTM puts by Black-Scholes is much stronger.
The higher premium the market places on OTM puts may be intuitively explained
as follows; the market perceives drops in prices much more likely than hikes and/or
investors are more worried about market crashes and thus buy puts for protection.

2.1.2 Heston and the Volatility Smile

If we look at an implied volatility plot resulting from the stochastic volatility model
introduced by Heston (1993) [24] we can observe the phenomenon described above.

2The put-call parity formula for European options is C − P = S −Ke−r(T−t), where C and
P represent the call and put option price, respectively.

3Moneyness can be defined as m =
ln(K

F )

ATMV
√
T

where K is the strike, F is the forward price, T

is the maturity and ATMV is the at-the-money implied volatility.
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This presents the first benefit of modeling stochastic volatility in describing features
that actual market data display.

The first plot in Figure ?? shows that the direction of the reverse skew is affected
by correlation ρ, with a positive slope if ρ > 0 and a negative slope if ρ < 0.
Changing the correlation ρ changes the degree of symmetry with calls being more
expensive when ρ > 0 and puts more expensive when ρ < 0 (see Maslova [34]). In
reality, equity options tend to give a negative slope in implied volatility. Indeed,
this conforms the earlier observation that when options data are used to calculate
implied volatilities its common to see the market requires a premium for OTM put
options.

Next, we examine the volatility of the variance σ (vol of vol). Its apparent from
Figure 2.1b that an increase in σ results in an increase in the convexity of the smile.
As σ approaches zero we expect a deterministic process for the variance which
implies a flat horizontal line for implied volatility (this is again the assumption
made in the Black-Scholes model).

The initial variance ν0 allows adjustments in the level of the smile, and has a much
lesser influence on the curvature, see Figure 2.1c. The effect of changing the level
of mean reversion θ on the volatility smile is similar to that of changing the initial
variance. Namely, the level of the smile is adjusted as θ is changed, see Figure
2.1d. Finally, the speed of mean reversion κ has an effect on the curvature of the
volatility smile, see Figure 2.1e.

2.2 Local Volatility

If we decide to remain within the framework of a single factor diffusion process but
wish to allow volatility to be time or state dependent or both, then we are working
with local volatility (also known as actual volatility). Local volatility is essentially
a measure of how much randomness is present in an asset’s return at a given time.
It is therefore a quantity that exists at a particular instant, making it difficult to
measure. Through this definition, volatility is only constant ‘locally’ according to
a specific asset price and time to maturity. If the volatility is time-dependent only,
it can be shown that σ(T ) may be derived from available implied volatilities σimp

(see Kwok [29] for an exercise on how to show this). Next, consider a state-time
dependent volatility function and suppose that we can compute the implied volatil-
ities σimp of a series of European option prices at a number of different strikes and
maturities. The aim is to find such a volatility function σ(St, t) that gives the
Black-Scholes option prices consistent with observed market option prices under
risk-neutrality. The function σ(St, t) is known as the local volatility function (see
initial work by Dupire [17] and Derman and Kani [13]).

For the sakes of completeness, we mention that as expected, an empirical study
undertaken by Duman, Fleming and Whaley (1998) [16] confirmed the dynamics
of the implied volatility surface did not conform the assumption of constant local
volatilities.

14
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2.3 A Short Motivational Study of Market Data

The following is an experiment carried out as evidence of some of the PDF char-
acteristics observed in equity markets described earlier in section 2.1.

Daily adjusted close prices for S&P5004 from January 1950 to June 2014 were
downloaded from Yahoo! Finance and exported to Excel. In order to calculate
the return for a particular day, we use the adjusted price for that day and for the
previous day. As we don’t have the price for the day preceding the first, we cannot
calculate returns for the first day. Starting with the second day, the returns are
calculated as follows:

r2 =
p2 − p1
p1

, (2.1)

where pi denotes the adjusted closing price, in which the effect of cash dividends,
stock dividends and stock splits are already incorporated. In order to construct
the PDF, we use scaled returns. These are calculated as follows:

r̄ =
r − µr

σr
, (2.2)

where µr is the average and σr the standard deviation of the returns, respectively.

In Figure 2.2a we plot the raw adjusted closing prices data to observe stock move-
ment. Figure 2.2b is a plot of the log-returns5 of S&P500 over a 64 year period.
We can observe the phenomenon of ‘volatility-clustering’ described earlier (see [21]
and [29]). Such phenomenon implies auto-correlation in variance resulting from the
mean-reverting property of the data.
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(a) S&P500 scaled returns dynam-
ics over the 64-year period.
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(b) S&P500 daily log-returns over
the 64-year period.

Figure 2.2: Empirical study plots of S&P500 returns data.

4This is Standard & Poor’s 500 index, a basket of 500 stocks chosen according to factors such
as market size, liquidity and industry grouping.

5The log-return of the underlying is evaluated as Rt = log( Xt

Xt−1
).
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In Figure 2.3a, we plot the frequency distribution (note we use relative frequency)
of the scaled returns over a 64 year period from 1950 to 2014. We can see that
the distribution is heavy tailed and high peaked relative to the normal distribution
as similar empirical studies show (see for example Gatheral [21]). The QQ-plot in
Figure 2.3b shows deviations from the tails of the empirical distribution indicating
that the data inconsistent with a normal distribution. The ‘fat’-tails and high
peaks indicate a series of mixed distributions with differing variances motivating
the need for stochastic volatility models.
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(a) Frequency distribution of
S&P500 scaled returns data rel-
ative to the normal distribution.
It can be seen that empirical
distribution has extreme tails and
high peaks.
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(b) QQ-plot of S&P500 scaled re-
turns relative to the normal distri-
bution. Large deviations from the
tails suggest scaled returns are not
normal.

Figure 2.3: Plots showing the deviations of the actual distribution of returns from
the Gaussian distribution assumed by the theoretical Black-Scholes model.

16



Chapter 2: General Review

2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0
·10−3

Days lapsed for returns calcualtion

M
ea
n
of

R
et
u
rn
s

(a) Plot of the mean of the returns
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(b) Plot of the variance of returns
for different day lapses.

Figure 2.4: Plots showing the mean and variance of returns for different days.

Figure 2.4a is a plot of the mean of returns and Figure 2.4b a plot of the variance
of returns, where we evaluate returns over 1, 2, 3, 4, 5, 6, 7 and 8 days. Notice that
the mean of the returns behave like µdt. Both have a decreasing linear relationship.
Also, the standard deviation scales with

√
dt.

We have thus motivated and justified the modeling of variance as a mean-reverting
random variable.
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Chapter 3

The Heston Model

3.1 Heston Dynamics

The Heston Model (1993) is represented by the system of bi-variate stochastic
differential equations (SDE):

dSt = µStdt+
√
νtStdW

1
t

dνt = κ(θ − νt)dt+ σ
√
νtdW

2
t

(3.1)

where EP[dW 1
t dW

2
t ] = ρdt with P the physical measure, {St}t≥0 and {νt}t≥0 are the

stock price and volatility processes in turn, {W 1
t }t≥0 and {W 2

t }t≥0 are correlated
Brownian motions with correlation coefficient ρ ∈ [−1, 1]. The variance follows a
mean-reverting square root process, first used by Cox-Ingersoll-Ross in 1985 (see
[10]) to capture interest rate dynamics, with κ > 0 the mean reversion rate, and
θ > 0 the mean reversion level. σ > 0 is known as the volatility-of-volatility. µ is
the drift of the stock process.

3.1.1 The Feller Condition

In order for the mean-reverting square root dynamics for the variance to remain
positive, there are various analytical results that may be employed. In particular,
the Feller condition states that if 2κθ ≥ σ2 then the variance process can never
reach the origin. This means that the volatility cannot become negative. On the
contrary, if 2κθ < σ2 then the origin is attainable and strongly reflecting so that
the variance process may attain zero in finite time, without spending time at this
point.

3.2 The Heston Pricing Partial Differential Equa-

tion

In this section we derive the Heston PDE. This is a special case of the general
derivation for stochastic volatility models, which can be found in Gatheral (2006)
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Chapter 3: The Heston Model

[21].

In the Black-Scholes case volatility is assumed constant. Thus there is only one
source of randomness coming from the Brownian Motion used to model stock dy-
namics, which can be hedged by trading in the underlying stock.

The quantity we are now modeling, stochastic volatility, is not a traded asset. As
such, it cannot be hedged by trading the underlying. Instead, to hedge random
changes in volatility we trade in two underlying contracts with different maturities.
We retain other assumptions of the Black-Scholes model. Mainly, the stock pays
no dividends; there are no transaction costs or taxes; short-selling is allowed; and
any trading is continuous.

Assume the market is specified by the SDEs (3.1) and the dynamics of the risk free
asset are:

dBt = rBtdt, (3.2)

where the risk free rate r is assumed constant. Form a portfolio consisting of one
option U(S, ν, t), −∆ units of stock, and −∆1 units of another option U1(S, ν, t) to
hedge the volatility. The value of the portfolio is then

Π = U −∆S −∆1U1. (3.3)

Assuming the portfolio is self-financing, the change in the portfolio across a time
step dt is given by

dΠ = dU −∆dS −∆1dU1. (3.4)

3.2.1 Portfolio Dynamics

An application of Itō’s Lemma yields

dΠ =

{
∂U

∂t
+

1

2
νS2∂

2U

∂S2
+ ρσνS

∂2U

∂ν∂S
+

1

2
σ2ν

∂2U

∂ν2

}
dt

−∆1

{
dU1

dt
+

1

2
νS2∂

2U1

∂S2
+ ρσνS

∂2U1

∂ν∂S
+

1

2
σ2ν

∂2U1

∂ν2

}
dt

+

{
∂U

∂S
−∆1

∂U1

∂S
−∆

}
dS

+

{
∂U

∂ν
−∆1

∂U1

∂ν

}
dν

(3.5)

where we have eliminated the explicit dependence on t of {St}t≥0 and {νt}t≥0 for
clarity of results.

3.2.2 The Riskless Portfolio

To eliminate the risk set

∆1 =
∂U

∂ν

/
∂U1

∂ν
(3.6a)

∆ =
∂U

∂S
−
(
∂U

∂ν

/
∂U1

∂ν

)
∂U1

∂S
. (3.6b)
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By no arbitrage the portfolio must earn the risk free rate. Hence

dΠ =

{
∂U

∂t
+

1

2
νS2∂

2U

∂S2
+ ρσνS

∂2U

∂ν∂S
+

1

2
σ2ν

∂2U

∂ν2

}
dt

−∆1

{
dU1

dt
+

1

2
νS2∂

2U1

∂S2
+ ρσνS

∂2U1

∂ν∂S
+

1

2
σ2ν

∂2U1

∂ν2

}
dt

= rΠdt

= r (U −∆S −∆1U1) dt

(3.7)

Substituting the equations for ∆1 and ∆ given by the equations (3.6a) and (3.6b)
into (3.7) we obtain(

∂U
∂t

+ 1
2
νS2 ∂2U

∂S2 + ρσνS ∂2U
∂ν∂S

+ 1
2
σ2ν ∂2U

∂ν2

)
− rU + rS ∂U

∂S

∂U
∂ν

=

(
∂U1

∂t
+ 1

2
νS2 ∂2U1

∂S2 + ρσνS ∂2U1

∂ν∂S
+ 1

2
σ2ν ∂2U1

∂ν2

)
− rU1 + rS ∂U1

∂S

∂U1

∂ν

(3.8)

Note that the left-hand side is a function of U only whilst the right-hand side is
a function of U1 alone. Therefore both sides must be equal a function f of the
independent variables S, ν and t. Following Heston (1993) set

f(S, ν, t) =− κ(θ − ν) + Λ(S, ν, t)σ
√
ν, (3.9)

leaving us with

∂U

∂t
+

1

2
νS2∂

2U

∂S2
+ ρσνS

∂2U

∂ν∂S
+

1

2
σ2ν

∂2U

∂ν2

+
{
κ(θ − ν)− Λ(S, ν, t)σ

√
ν
} ∂U
∂ν

− rU + rS
∂U

∂S
= 0,

(3.10)

where Λ(S, ν, t) is the market price of volatility risk. The functional form of
Λ(S, ν, t) is unknown. Heston motivates the form for the risk premium Λ(S, ν, t)σ

√
ν

by an application of a result by Cox-Ingersoll-Ross (1985) [10], where its shown that
for a state variable with dynamics given by variance equation in (3.1), the market
price of volatility risk is proportional to volatility (form can also be seen as an
application of the equilibrium model posed in Breeden (1979) [5]). So we assume

Λ(S, ν, t)σ
√
ν = λν for some constant λ

= λ(S, ν, t)
(3.11)

We denote λ(S, ν, t) as the market price of volatility risk. This parameter needs to
be estimated, however this is not an easy task so we will set it to zero throughout
the dissertation, unless otherwise stated. Estimation of this parameter is subject
to its own research (for example see Bollerslev et al. (2011) [4]).
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3.2.3 Heston PDE in Terms of Log Spot

Transform variables by defining the log price x = ln(S) so we can express the
Heston PDE (3.10) in terms of (x, ν, t). By the chain rule

∂U

∂S
=

1

S

∂U

∂x
(3.12a)

∂2U

∂ν∂S
=

1

S

∂2U

∂ν∂x
(3.12b)

and by the product rule

∂2U

∂S2
=

∂

∂S

(
1

S

∂U

∂x

)
=

1

S2

(
∂2U

∂x2
− ∂U

∂x

)
(3.13)

Substituting into (3.10) gives

∂U

∂t
+

1

2
ν
∂2U

∂x2
+

(
r − 1

2
ν

)
∂U

∂x
+ ρσν

∂2U

∂ν∂x
+

1

2
σ2ν

∂2U

∂ν2

+ {κ(θ − ν)− λν} ∂U
∂ν

− rU = 0

(3.14)

The Heston PDE is a two-dimensional diffusion-convection reaction equation with a
mixed spatial-derivatives term. The convection property arises from the first-order
derivative terms, whilst the diffusion arises from the second-order derivative terms.
There is the presence of the present valuing term −rU also, which has the effect
of discounting value decreases everywhere. This equation is a member of a wider
group of linear parabolic equations and such PDE often arise in financial models.

3.3 Risk-Neutral Pricing Approach

We make the important observation that the volatility
√
νt is not modelled directly

rather it is modeled through the variance νt. The dynamics of νt arise through the
Ornstein-Uhlenbeck process for the volatility ht =

√
νt given by

dht = −βhtdt+ δdW 2
t (3.15)

Apply Itō’s Lemma to νt = h2t to get

dνt = (δ2 − 2βνt)dt+ 2δ
√
νtdW

2
t (3.16)

Defining κ := 2β, θ := δ2

2β
and σ := 2δ we obtain the SDE for the variance given in

(3.1).

The SDEs represented by the system (3.1) are given under the physical measure
P. For pricing we need the dynamics for the stock and variance processes {St}t≥0

and {νt}t≥0 to be under the risk-neutral measure Q. We can achieve a change of
measure from the physical measure P to an equivalent martingale measure (EMM)
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Q via Girsanov’s theorem. In particular, the class of EMMs can be considered in
terms of the Radon-Nikodym derivatives

dQ
dP

= exp

{
−
(∫ t

0

qsdW
1
s +

∫ t

0

Λ(S, ν, s)dW 2
s

)
− 1

2

(∫ t

0

q2sds+

∫ t

0

Λ2(S, ν, s)ds

)}
(3.17)

By Girsanov we also have that

dW̃ 1
t = dW 1

t + qtdt

= dW 1
t +

µ− r√
ν
dt (3.18a)

dW̃ 2
t = dW 2

t + Λ(S, ν, t)dt

= dW 2
t +

λ(S, ν, t)

σ
√
ν

dt (3.18b)

are Q-Brownian motions.

Under Q, equations in (3.1) become

dSt = rStdt+
√
νtStdW̃

1
t (3.19a)

dνt = κ∗(θ∗ − νt)dt+ σ
√
νtdW̃

2
t (3.19b)

where EQ[dW̃ 1
t dW̃

2
t ] = ρdt and κ∗ = κ + λ and θ∗ = κθ

κ+λ
. If we set λ = 0 then

κ∗ = κ and θ∗ = θ so that the parameters remain the same under physical and risk
neutral measures.

3.4 The Heston Closed-Form Solution

3.4.1 The Call Option Price

In this section we would like to solve the Heston PDE (3.10) for a European call
option subject to the terminal condition C(S, ν, T ) = max (ST −K, 0) and the
boundary conditions

C(0, ν, t) = 0, (S = 0) (3.20a)

∂C

∂S
(∞, ν, t) = 1, (S = ∞) (3.20b)

∂C

∂t
+ rS

∂C

∂S
− rC + κθ

∂C

∂ν
= 0, (ν = 0) (3.20c)

C(S,∞, t) = S, (ν = ∞) (3.20d)

We follow the steps in Rouah (2013) [40]. The general risk-neutral approach is
taken in which we assume the option price is given by the discounted expected
future payoff under an equivalent martingale pricing measure. We know the payoff
of a European call option is given by

C(S, T ) = max (ST −K, 0),
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so we can express the price of the option C(S, t) at any time t ∈ [0, T ] as follows

C(S, t) = e−r(T−t)EQ[Payoff(S)|Ft]

= e−r(T−t)EQ[max (ST −K, 0)|Ft]

= e−r(T−t)EQ[(ST −K)1ST>K |Ft]

= e−r(T−t)EQ[ST1ST>K |Ft]︸ ︷︷ ︸
(1)

−Ke−r(T−t) EQ[1ST>K |Ft]︸ ︷︷ ︸
(2)

= StP1 −Ke−r(T−t)P2

(3.21)

where P1 and P2 each represent the probability of the call expiring in-the-money
(ITM) (but under different probability measures) conditional on St and νt. We set
St = ext . This means

Pj = Pr(lnST > lnK|Ft) for j = 1, 2. (3.22)

To evaluate (2) we just note that this is simply the probability of the call expiring
ITM under the risk-neutral measure Q thus

EQ[1ST>K |Ft] = Q(ST > K|Ft)

= Q(lnST > lnK|Ft)

= P2.

(3.23)

To evaluate (1) we must perform a change of measure from Q to Qs. Consider the
Radon-Nikodym derivative

dQ
dQs

=
BT

Bt

/
ST

St

=
EQ[exT ]

exT
(3.24)

where as usual Bt = e
∫ t
0 rsds ⇒ BT

Bt
= e

∫ T
t rsds. Thus

e−r(T−t)EQ[ST1ST>K |Ft] = StEQ
[
ST

St

/
BT

Bt

1ST>K |Ft

]
= StEQs

[
ST

St

/
BT

Bt

1ST>K
dQ
dQs

|Ft

]
= StEQs

[1ST>K |Ft]

= StQs(ST > K|Ft)

= StP1.

(3.25)

Note that the pricing formula (3.21) is very similar to the Black Scholes equation,
where the only difference is the probabilities P1 and P2. These probabilities are
different and they arise as we model volatility as stochastic, which leads to different
distributions.

3.4.2 The Forward Equation

Let the solution take the form given by equation (3.21). Express this solutions in
terms of the log price as follows

C(ex, t) = exP1 −Ke−r(T−t)P2.
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The call price C(ex, t) satisfies the Heston PDE (3.14) so we proceed to evaluate
the necessary derivatives. We drop the subscripts for notational convenience. We
have

∂U

∂t
= ex

∂P1

∂t
−Ke−r(T−t)

[
rP2 +

∂P2

∂t

]
(3.26a)

∂U

∂x
= ex

[
P1 +

∂P1

∂x

]
−Ke−r(T−t)∂P2

∂x
(3.26b)

∂2U

∂x2
= ex

[
P1 + 2

∂P1

∂x
+
∂2P1

∂x2

]
−Ke−r(T−t)∂

2P2

∂x2
(3.26c)

∂U

∂ν
= ex

∂P1

∂ν
−Ke−r(T−t)∂P2

∂ν
(3.26d)

∂2U

∂ν2
= ex

∂2P1

∂ν2
−Ke−r(T−t)∂

2P2

∂ν2
(3.26e)

∂2U

∂x∂ν
= ex

[
∂P1

∂ν
+
∂2P1

∂x∂ν

]
−Ke−r(T−t) ∂

2P2

∂x∂ν
(3.26f)

Substituting terms (3.26a)-(3.26f) into (3.14) gives two equations which may be
combined to give the Fokker-Planck forward equation (also known as the forward
Kolmogorov equation)

∂Pj

∂t
+ ρσν

∂2Pj

∂ν∂x
+

1

2
ν
∂2Pj

∂x2
+

1

2
σ2ν

∂2Pj

∂ν2

+(r + ujν)
∂Pj

∂x
+ (a− bjν)

∂Pj

∂ν
= 0

(3.27)

for j = 1, 2 where u1 =
1
2
, u2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ and b2 = κ+ λ. The

probabilities Pj are subject to the terminal condition

Pj = 1xT>lnK . (3.28)

3.4.3 Obtaining the Characteristic Functions

There is no direct closed form solution to find the probabilities Pj. However, they
may be recovered from characteristic functions fj(φ;x, ν) which do possess closed
form solutions. They can be found via the Gil-Pelaez (1951) (see [22]) inversion
formula

Pj = Pr(lnST > lnK) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφlnKfj(φ;x, ν)

iφ

]
dφ (3.29)

where i =
√
−1 is the imaginary unit.

Following Heston (1993), assume that the characteristic functions for the log ter-
minal spot price xT = ln(ST ) take the log linear form

fj(φ;xt, νt) = exp {Cj(T − t, φ) +Dj(T − t, φ)νt + iφxt} (3.30)

where Cj and Dj are coefficients. By the Feynman-Kac̆ theorem, the characteris-
tic functions (3.30) satisfy the forward equation (3.27). By the theorem f has a
representation given by

f(xt, νt, t) = E[f(xT , νT , T )|Ft] = E[eiφlnST |xt, νt]. (3.31)
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Equation (3.31) is the characteristic function for xT = lnST . Thus the PDE for the
characteristic function is

−∂fj
∂τ

+ ρσν
∂2fj
∂ν∂x

+
1

2
ν
∂2fj
∂x2

+
1

2
σ2ν

∂2fj
∂ν2

+(r + ujν)
∂fj
∂x

+ (a− bjν)
∂fj
∂ν

= 0

(3.32)

where τ = T − t is the time to expiry. Next we evaluate the appropriate derivatives

∂fj
∂τ

=

(
∂Cj

∂τ
+
∂Dj

∂τ
ν

)
fj (3.33a)

∂fj
∂x

= iφfj (3.33b)

∂fj
∂ν

= Djfj (3.33c)

∂2fj
∂x2

= − φ2fj (3.33d)

∂2fj
∂ν2

= D2
jfj (3.33e)

∂2fj
∂x∂ν

= iφDjfj (3.33f)

Substitute (3.33a)-(3.33f) into (3.32) and we obtain a system of two ordinary dif-
ferential equations (ODEs):{

∂Dj

∂τ
= ρσiφDj − 1

2
φ2 + 1

2
σ2D2

j + iφuj − bjDj, (1)
∂Cj

∂τ
= riφ+ aDj (2)

subject to
Cj(0, φ) = 0, Dj(0, φ) = 0.

Equation (1) is a Ricatti equation, while equation (2) is an ordinary derivative for
Cj that may be solved by integrating once Dj has been obtained.

3.4.4 Solution to the Heston-Ricatti equation

General Solution to the Ricatti equation

The Ricatti equation for y(t) is given by

dy(t)

dt
= P (t) +Q(t)y(t) +R(t)y2(t). (3.34)

To solve (3.34), we note that any Ricatti type equation may be reduced to the
second order linear ODE for w(t) (see Al Bastami et al. [1])

w′′ −
[
P ′

P
+Q

]
w′ + PRw = 0

⇔ w′′ + bw′ + cw = 0

(3.35)
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where b = −
[
P ′

P
+Q

]
, c = PR, by use of the substitution

y(t) = −w
′(t)

w(t)

1

R(t)
. (3.36)

To solve equation (3.35), consider the auxiliary equation r2+ br+ c = 0, which has
roots

α =
−b+

√
b2 − 4ac

2
(3.37a)

β =
−b−

√
b2 − 4ac

2
. (3.37b)

The general solution is given by

w(t) = Aeαt +Beβt (3.38)

where A,B are constants. Therefore the general solution to the Ricatti equation
(3.34) is

y(t) = − Aαeαt +Bβeβt

Aeαt +Beβt
1

R(t)
. (3.39)

General solution to the Heston-Ricatti equation

We follow Rouah (2013) (see [40]). Rearrange equation (1) to give

∂Dj

∂τ
=

[
iφuj −

1

2
φ2

]
− [bj − ρσiφ]Dj +

1

2
σ2D2

j , (3.40)

and then rewrite so that

∂Dj

∂τ
= Pj −QjDj +RD2

j , (3.41)

where

Pj = iφuj −
1

2
φ2

Qj = bj − ρσiφ

R =
1

2
σ2.

The corresponding second order linear ODE is

w′′ +Qjw
′ + PjRw = 0, (3.43)

where we have used the substitution

Dj = − 1

R

w′

w
. (3.44)
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The auxiliary equation in this case is r2 +Qjr + Pjr = 0, which has roots

αj =
−Qj +

√
Q2

j − 4PjR

2
=

−Qj + dj
2

(3.45a)

βj =
−Qj −

√
Q2

j − 4PjR

2
=

−Qj − dj
2

, (3.45b)

where

dj = αj − βj =
√
Q2

j − 4PjR

=

√
(ρσiφ− bj)2 − 4(ujiφ− 1

2
φ2)

1

2
σ2

=
√

(ρσiφ− bj)2 − σ2(2iφuj − φ2.

So the general solution is given by

Dj = − 1

R

w′

w
= − 1

R

(
Aαeατ +Bβeβτ

Aeατ +Beβτ

)
= − 1

R

(
Kαeατ + βeατ

Keατ + eβτ

)
, (3.46)

where K = A
B
. From the initial condition

Dj(0, φ) = 0 ⇒ − 1

R

(
Kα + β

K + 1

)
= 0 ⇒ K = − β

α
(3.47)

⇒ Dj = − β

R

(
−eατ + eβτ

−gjeατ + eβτ

)
= − β

R

(
−eατe−βτ + eβτe−βτ

−gjeατe−βτ + eβτe−βτ

)
= − β

R

(
1− edjτ

1− gjedjτ

)
=

Qj + dj
2R

(
1− edjτ

1− gjedjτ

)
.

To see the last step, recall that βj =
−Qj−dj

2
so

−βj
R

=
Qj + dj
2R

. (3.48)

We have set

gj = −K =
β

α
=

−bj + ρσiφ− dj
−bj + ρσiφ+ dj

=
bj − ρσiφ+ dj
bj − ρσiφ− dj

=
Qj + dj
Qj − dj

(3.49)

⇒ Dj(τ, φ) =
bj − ρσiφ+ dj

σ2

(
1− edjτ

1− gjedjτ

)
. (3.50)

To find Cj integrate between 0 and τ and we have

Cj =

∫ τ

0

riφ dy︸ ︷︷ ︸
(1)

+a

(
Qj + dj
σ2

)∫ τ

0

(
1− edjy

1− gjedjy

)
dy︸ ︷︷ ︸

(2)

. (3.51)
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Integral (1) can be found straightaway. For integral (2) use a substitution x = edjy

then dx = dje
djydy ⇒ dy = dx

xdj
. To obtain the limits of integration note when

y = 0, x = 1 and when y = τ , x = edjτ so we have

Cj = riφτ +
a

dj

(
Qj + dj
σ2

)∫ edjτ

1

(
1− x

1− gjx

)
1

x
dx+ k1, (3.52)

where k1 is an arbitrary constant of integration. By partial fraction decomposition

1

x

(
1− x

1− gjx

)
=

1

x
− 1− gj

1− gjx
. (3.53)

So (2) becomes∫ edjτ

1

(
1− x

1− gjx

)
1

x
dx =

∫ edjτ

1

[
1

x
− 1− gj

1− gjx

]
dx

=

[
lnx+

1− gj
gj

ln(1− gjx)

]x=edjτ

x=1

=

[
djτ +

1− gj
gj

ln

(
1− gje

djτ

1− gj

)]
.

By the initial condition Cj(0, φ) = 0 we have k1 = 0. Therefore we obtain

Cj = riφτ +
a

σ2

[
(bj − ρσiφ+ dj)τ − 2ln

(
1− gje

djτ

1− gj

)]
. (3.54)

In summary the closed-form solution to the Heston model is

fj(φ;xt, νt) = exp {Cj(T − t, φ) +Dj(T − t, φ)νt + iφxt} (3.55a)

Cj(T − t, φ) = riφ(T − t) +
a

σ2

[
(bj − ρσiφ+ dj)(T − t)− 2ln

(
1− gje

dj(T−t)

1− gj

)]
(3.55b)

Dj(T − t, φ) =
bj − ρσiφ+ dj

σ2

(
1− edj(T−t)

1− gjedj(T−t)

)
(3.55c)

gj =
bj − ρσiφ+ dj
bj − ρσiφ− dj

(3.55d)

dj =
√

(ρσiφ)2 − σ2(2iφuj − φ2) (3.55e)
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Figure 3.1: European call option analytical solu-
tion price grid in the uniform case with parameter
values κ = 2, θ = 0.2, σ = 0.3, ρ = 0.8, r = 0.03,
S = 200, V = 1, T = 1, K = 100, NS = 40 and
NV = 20

3.5 Pricing via Fourier Transforms

In this section, the following definitions are adopted.

Definition 3.5.1 (Fourier and Inverse Fourier Transforms). The Fourier trans-
form F {·} and inverse Fourier Transform F−1 {·} of a function f(x) are given by,
respectively,

F {f(x)} ≡ f̂(ξ) =

∫ ∞

−∞
eiξxf(x) dx (3.56a)

F−1
{
f̂(ξ)

}
≡ f(x) =

1

2π

∫ ∞

−∞
e−iξxf̂(ξ) dξ. (3.56b)

�

One important property of the Fourier transform is differentiation. If 0 < n ∈ Z,
fn is piecewise continuously differentiable and each derivative is integrable then we
can apply integration by parts iteratively to obtain the Fourier transform of the
n-th derivative

F
{
dnf(x)

dxn

}
= (−iξ)nf̂(ξ). (3.57)

Another useful result is the derivative of the Fourier transform, obtained through
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differentiation under the integral sign

df̂(ξ)

dξ
=

∫ ∞

−∞

d

dξ
(eiξxf(x)) dx =

∫ ∞

−∞
xieiξxf(x) dx = iĝ(x), (3.58)

where g(x) = xf(x).

Note further, if we let f(x) represent the density of some random variable X then
the Fourier transform is the characteristic function of f(x), i.e.

f̂(ξ) = E
[
eiξx
]
. (3.59)

This is easily seen by the definition of the expectation operator.

3.5.1 Carr and Madan Approach

Carr and Madan (1999) present an approach to analytically determine the option
price by the Fast Fourier tansform (FFT) in terms of the characteristic function and
risk-neutral density. The advantages of the approach lie in the reduced computation
time and the fast decay of the integrand (faster than that of Heston (1993)). We
will see that the FFT cannot be applied directly due to a singular point at the
origin. Instead, the method requires us to redefine the call price to incorporate a
damping factor. Once we obtain the Fourier transform of the modified call price,
we invert it and finally we recover the actual call price by eliminating the damping
factor.

Define xT := ln(ST ) and k := ln(K), where K is the strike price. Let q(x) denote
the risk-neutral density of the log price xT . The European call price as a function
of k for an option with maturity T is given by (recall (3.21))

CT (k) = e−r(T−t)EQ [max(ST −K, 0)]

= e−r(T−t)

∫ ∞

k

(
ex − ek

)
q(x) dx

= extQs(ST > ek)−Ke−r(T−t)Q(ST > ek).

(3.60)

In order to find Qs(ST > ek) and Q(ST > ek) we must invert the characteris-
tic function (recall Gil-Pelaez formula (3.29)). This requires integrability of the
characteristic function. Unfortunately, CT (k) 9 0 as k → −∞

lim
k→−∞

CT (k) = lim
k→−∞

e−r(T−t)

∫ ∞

k

(
ex − ek

)
q(x) dx

= e−r(T−t)EQ [ex]

= St.

(3.61)

So the limit does not converge to zero. This means that CT (k) is not integrable
1

L1 and therefore its Fourier transform and inverse do not exist. Carr and Madan

1A function f(x) is integrable if
∫∞
−∞|f(x)| dx < ∞. This condition must hold for the Fourier

transform and its inverse to exist. The space of all integrable functions is L1 or L1(R).

30



Chapter 3: The Heston Model

(1999) resolve this by introducing a damping factor eαk with α > 0 to the call price
CT (k)

cT (k) = eαkCT (k). (3.62)

The modified call price (3.62) is an integrable function since

lim
k→−∞

cT (k) = lim
k→−∞

eαkCT (k) = lim
k→−∞

e−r(T−t)

∫ ∞

k

(
eαk+x − e(α+1)k

)
q(x) dx

= lim
k→−∞

e−r(T−t)

∫ ∞

k

eαk+xq(x) dx− lim
k→−∞

e−r(T−t)+(α+1)k

∫ ∞

k

q(x) dx

= 0,
(3.63)
such that cT (k) is integrable L

1. We may thus find the Fourier transform of cT (k).
It is given by

ĉT (ξ) =

∫ ∞

−∞
eiξkcT (k) dk =

∫ ∞

−∞
eiξkeαkCT (k) dk

= e−r(T−t)

∫ ∞

−∞
e(α+iξ)k

[∫ ∞

k

(ex − ek)q(x)

]
dk

= e−r(T−t)

∫ ∞

−∞
q(x)

[∫ x

−∞

(
e(α+iξ)k+x − e(α+iξ+1)k

)
dk

]
dx

= e−r(T−t)

∫ ∞

−∞
q(x)

[(
e(α+iξ)k+x

α + iξ
− e(α+iξ+1)k

α + iξ + 1

)k=x

k=−∞

]
dx

= e−r(T−t)

∫ ∞

−∞
q(x)

[
e(α+iξ+1)x

α2 + α− ξ2 + i(2α + 1)ξ

]
dx

=
e−r(T−t)ψ(ξ − (α + 1)i)

α2 + α− ξ2 + i(2α + 1)ξ
,

(3.64)

where we have used the fact that having −∞ < k <∞ and k < x <∞ is equivalent
to −∞ < x < ∞ and −∞ < k < x. The call value can be found via the inverse
Fourier transform of cT (k),

CT (k) = e−αkcT (k)

= e−αk 1

2π

∫ ∞

−∞
e−iξkĉT (ξ) dξ

= e−αk 1

π

∫ ∞

0

e−iξkĉT (ξ) dξ.

The last line holds because CT (k) is real so we need only to consider the real part
of the complex integrand ĉT (k), and the real part is even valued.

The value for a European put option is found similarly.

3.5.2 Lewis’ Approach

Generalized Fourier transform The generalized Fourier transform extends our
previous discussions to include the complex plane. So far, we have just looked
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at the characteristic function defined for real valued transform variables ξ. It is
sometimes necessary to extend the contour of integration to that parallel to the
real axis, so we now look at transform variables ξ ∈ C. It is necessary to restrict
the plane to where the characteristic function is well defined. It turns out that the
expectation in (3.59) is well defined, for a set of values ξ = ξr + iξi, within a strip
of regularity α < ξi < β parallel to the real z-axis (see Schmelzle (2010) [41]). The
inverse of the generalized Fourier transform f̂(ξ, t) is given by

f(x, t) =
1

2π

∫ iξi+∞

iξi−∞
e−iξxf̂(ξ, t) dξ. (3.65)

The key idea behind the approach taken by Lewis (2000) (see [30] and [31]) is that
of expressing the option price as the convolution of generalized Fourier transforms
followed by an application of the Plancherel-Parseval identity. This approach may
be applied to many payoff functions.

In this approach, it is not necessary to take the Fourier transform of the option
price as in Carr and Madan (1999) [6], only the Fourier transform of the payoff
function (call it the payoff transform, see Rouah (2013) [40]). In addition, we
require the fundamental transform. Whilst the payoff transform is model indepen-
dent and independent of the fundamental transform, the fundamental transform is
model dependent. We firstly compute the generalized Fourier transform f̂(ξ, t) of
a derivative f(x, t) with expiry T

f̂(ξ, t) =

∫ ∞

−∞
eiξxf(x, t) dx. (3.66)

Consider the following example of a European call, for which the payoff function
is known explicitly.

Example 3.5.1. Recall the payoff of a European call option is given by C(x, T ) =
max(ST −K, 0) such that the payoff transform is

F {C(xT , T )} ≡ Ĉ(ξ, T ) =

∫ ∞

−∞
eiξxmax(ex −K, 0) dx

=

∫ ∞

ln(K)

e(iξ+1)x dx−K

∫ ∞

ln(K)

eiξx dx

=

[
1

iξ + 1
e(iξ+1)x

]x=∞

x=ln(K)

−
[
K

iξ
eiξx
]x=∞

x=ln(K)

=

 lim
x→∞

[
1

iξ + 1
e(iξ+1)x

]
︸ ︷︷ ︸

(1)

− 1

iξ + 1
e(iξ+1)ln(K)



−

 lim
x→∞

[
K

iξ
eiξx
]

︸ ︷︷ ︸
(2)

−K
iξ
eiξln(K)

 .

(3.67)
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We require

(1) = lim
x→∞

[
1

iξ + 1
e(iξ+1)x

]
= 0 (3.68a)

(2) = lim
x→∞

[
K

iξ
eiξx
]
= 0 (3.68b)

Express ξ = ξr + iξi where ξr and ξi denote the real and imaginary parts of ξ
respectively. In order for equation (3.68a) to hold, we need ξi > 1. To see why this
is true, rewrite the numerator in terms of real and imaginary parts, i.e. e(iξ+1)x =
e(i(ξr+iξi)+1)x = ex(iξr−ξi+1). Disregarding the real part of ξ, in order for the limit in
(1) to tend to zero as x→ ∞ we must have

−ξi + 1 < 0 ⇒ ξi > 1. (3.69)

Similarly, in order for equation (3.68b) we require

−ξi < 0 ⇒ ξi > 0. (3.70)

We then have

Ĉ(ξ, T ) = − 1

iξ + 1
e(iξ+1)ln(K) +

K

iξ
eiξln(K)

=
−iξKiξ+1 + (iξ + 1)Kiξ+1

(iξ + 1)(iξ)

= − Kiξ+1

ξ2 − iξ
,

(3.71)

subject to conditions (3.69) and (3.70), which combined imply

ξi > 1. (3.72)

�

It is straightforward to show that the value of a European put option has the same
functional form as the call except it is well defined in a different strip of the complex
plane ξi < 0. We can find payoff transforms for other derivatives, for example see
Table 2.1 of Lewis (2000) [30] (also Table 1 of Schmelzle (2010) [41] and Table 1 of
Cartea (2013) [7]), in particular observe the different restrictions on the complex
variable ξ to guarantee existence of the transform.

Figure 3.2a is a plot of the real part of a European call option. The axes are
restricted to the strip of regularity for which the Fourier transform exists (recall
we need ξi > 1), set the range of integration following the original presentation in
Schmelzle (2010) [41] to 1 < ξi < 2 and −4 < ξr < 4.
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(a) Strip of regularity for European
call options ξi > 1.

(b) Strip of regularity for European
put options ξi < 1.

Similarly, Figure 3.2b is a plot of the real part of a European put option. We plot
the real part of the payoff function over the range −1 < ξi < 0 and −4 < ξr < 4.

After evaluating the payoff transform, we need to find the fundamental transform.
Recall that in the approach taken by Carr and Madan (1999), it is necessary to
evaluate the Fourier transform of the option price. This means that we need a
separate Fourier transform for each type of derivative for which we have a price. The
advantage of the approach taken by Lewis (2000) is that the fundamental transform
is model dependent and independent of a particular payoff, so once obtained we
need only evaluate the transform of the derivative payoffs. The same fundamental
transform can be applied to price different European options, the only requirement
is that the payoff transform be obtainable analytically. Payoff transforms are more
easily obtained than derivative price transforms, since they are trade data (i.e.
specified within a contract) and therefore known explicitly.

We proceed to find the fundamental transform. Our attention is restricted to the
Heston model wherein lies our interest (for a general derivation see Chapter 2 of
[30]). Recall the Heston PDE in equation (3.14) and consider a continuous dividend
yield q

−∂U
∂t

= − rU +

(
r − q − 1

2
ν

)
∂U

∂x
+

1

2
ν
∂2U

∂x2

+ {κ(θ − ν)− λν} ∂U
∂ν

+
1

2
σ2ν

∂2U

∂ν2
+ ρσν

∂2U

∂ν∂x
.

Next, translate the PDE (3.73) into a PDE in terms of the Fourier transform
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Û(ξ, ν, t). This can be easily done using earlier results.

F
{
−∂U
∂t

}
= F

{
−rU +

(
r − q − 1

2
ν

)
∂U

∂x
+

1

2
ν
∂2U

∂x2
+ {κ(θ − ν)− λν} ∂U

∂ν

+
1

2
σ2ν

∂2U

∂ν2
+ ρσν

∂2U

∂ν∂x

}
=

∫ ∞

−∞
eiξx

(
−rU +

(
r − q − 1

2
ν

)
∂U

∂x
+

1

2
ν
∂2U

∂x2
+ {κ(θ − ν)− λν} ∂U

∂ν

+
1

2
σ2ν

∂2U

∂ν2
+ ρσν

∂2U

∂ν∂x

)
dx

= − r

∫ ∞

−∞
eiξxU dx+

(
r − q − 1

2
ν

)∫ ∞

−∞
eiξx

∂U

∂x
dx+

1

2
ν

∫ ∞

−∞
eiξx

∂2U

∂x2
dx

+ {κ(θ − ν)− λν}
∫ ∞

−∞
eiξx

∂U

∂ν
+ dx+

1

2
σ2ν

∫ ∞

−∞
eiξx

∂2U

∂ν2
dx

+ ρσν

∫ ∞

−∞
eiξx

∂2U

∂ν∂x
dx

⇒ − ∂Û

∂t
= − rÛ +

(
r − q − 1

2
ν

)
(−iξ)Û +

1

2
ν(iξ)2Û

+ {κ(θ − ν)− λν} ∂Û
∂ν

+
1

2
σ2ν

∂2Û

∂ν2
+ ρσν(−iξ)∂Û

∂ν
.

(3.73)

Rearranging gives

−∂Û
∂t

= (−r − iξ(r − q)) Û − 1

2
ν
(
ξ2 − iξ

)
Û

+ {κ(θ − ν)− λν − iξρσν} ∂Û
∂ν

+
1

2
σ2ν

∂2Û

∂ν2

We have used the earlier Fourier differentiation result (3.57). In particular, it’s
important to realise that we assume boundary terms present during the integration
by parts procedure may be neglected. Lewis (2000) explains that typically, within
the strip of regularity α < ξi < β for which the transform is well defined, the
boundary terms vanish. He dedicates a paragraph explaining why this is in fact
the case.

Following Lewis (2000), define τ = T−t and write the generalized Fourier transform
as follows

Û(ξ, ν, t) = exp {(r − iξ(r − q))τ} ĥ(ξ, ν, τ), (3.74)

for some function ĥ. Evaluate the necessary derivatives

−∂Û
∂t

=
∂Û

∂τ
= {−r − iξ(r − q)} exp {(r − iξ(r − q))τ} ĥ(ξ, ν, τ) (3.75a)

+ exp {(r − iξ(r − q))τ} ∂ĥ
∂τ

(ξ, ν, τ) (3.75b)

∂Û

∂ν
= exp {(r − iξ(r − q))τ} ∂ĥ

∂ν
(ξ, ν, τ) (3.75c)

∂2Û

∂ν2
= exp {(r − iξ(r − q))τ} ∂

2ĥ

∂ν2
(ξ, ν, τ). (3.75d)
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Substituting the above derivatives into the PDE (3.73) gives (cancel common fac-
tors)

∂ĥ

∂τ
=

1

2
σ2ν

∂2ĥ

∂ν2
+ {κ(θ − ν)− λν − iξρσν} ∂ĥ

∂ν
− c(ξ)νĥ, (3.76)

where c(ξ) = 1
2
(ξ2 − iξ).

The payoff function does not depend upon the variance ν. Lewis explains that this
is because we have restricted our theory to volatility independent payoffs. He argues
that due to this restriction it is sufficient to consider the case ĥ(ξ, ν, τ = 0) = 1, i.e.
a payoff of 1. Any other payoff may be dealt with by multiplying the solution for the
case in which the payoff is 1, by the corresponding payoff transform. A solution
ĥ(ξ, ν, τ) to the PDE (3.73) satisfying the initial condition ĥ(ξ, ν, τ = 0) = 1
is called a fundamental transform. The PDE (3.73) is regular if there exists a
fundamental transform regular within the strip α < ξi < β where ξi = Imξ and
α,β ∈ R.

After having found the fundamental transform, the recipe to evaluate option prices
given by Lewis (2000) is as follows

1. Multiply the fundamental transform by the payoff transform.

2. Further multiply by the factor exp {(r − iξ(r − q))τ}.

3. Evaluate the inverse transform of the result maintaining ξi within the strip
of regularity for which the transform is well defined.

We proceed to evaluate the fundamental transform for the Heston model. Let λ = 0
then

∂ĥ

∂τ
=

1

2
σ2ν

∂2ĥ

∂ν2
+ {κ(θ − ν)− iξρσν} ∂ĥ

∂ν
− c(ξ)νĥ (3.77)

We now follow the transformation adopted by Lewis (2000) and adapted version
for the Heston model presented by Rouah (2013). Let t = σ2τ

2
then

∂ĥ

∂t
= ν

∂2ĥ

∂ν2
+

2

σ2
{κ(θ − ν)− iξρσν} ∂ĥ

∂ν
− 2

σ2
c(ξ)νĥ

= ν
∂2ĥ

∂ν2
+
{
κ̃(θ̃ − ν)

} ∂ĥ
∂ν

− c̃(ξ)νĥ,

(3.78)

where

κ̃ =
2(κ+ iξρσ)

σ2
(3.79a)

θ̃ =
κθ

κ+ iξρσ
(3.79b)

c̃(ξ) =
2c(ξ)

σ2
=
ξ2 − iξ

σ2
. (3.79c)

Equation (3.78) is a parabolic equation, thus the solution takes the form

f(ν, t) = eC(t)+D(t)ν , (3.80)
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subject to the initial condition C(0) = D(0) = 0. Taking the corresponding deriva-
tives yields

∂f

∂t
=

(
∂C

∂t
+
∂D

∂t

)
f (3.81a)

∂f

∂ν
= D(t)f (3.81b)

∂2f

∂ν2
= D2(t)f. (3.81c)

So [
−∂C
∂t

+ κ̃θ̃D

]
+

[
−∂D
∂t

+D2 − κ̃D − c̃

]
ν = 0. (3.82)

We must therefore solve the set of ODEs{
∂C
∂t

= κ̃θ̃D, (1)
∂D
∂t

= D2 − κ̃D − c̃ (2)

Note that equation (2) is in the form of a Ricatti equation which we have already
solved. Thus, proceeding as before the corresponding second order ODE is w′′ +
κ̃w′ − c̃w = 0 and the auxiliary equation is therefore r2 + κ̃r − c̃ = 0. So the roots
are given by

α =
−κ̃+ d

2
(3.83a)

β =
−κ̃− d

2
(3.83b)

d =
√
κ̃2 + 4c̃. (3.83c)

From the initial conditions we have K = −α
β
= κ̃+d

−κ̃+d
. So

D(t) =
κ̃+ d

2

(
1− edt

1− gedt

)
(3.84a)

g = −K (3.84b)

d = α− β. (3.84c)

Finally C(t) may be found by integrating the expression for D(t) above∫ t

0

D(z)dz =
κ̃+ d

2

∫ t

0

(
1− edz

1− gedz

)
dz

=
κ̃+ d

2
t− ln

(
1− gedt

1− g

)
+ k1,

(3.85)

where k1 is an arbitrary constant of integration. From initial conditions k1 = 0.
Hence,

C(t) = κ̃θ̃

[
κ̃+ d

2
t− ln

(
1− gedt

1− g

)]
(3.86)

and we have found the solution to our parabolic equation (3.78).
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Chapter 4

Finite Difference Schemes

PDEs are ubiquitous in almost all applied mathematics. Whilst the Heston model
admits a closed form solution for branches of European options, in practice most
equations do not. For this reason we turn to numerical techniques. Among the
vast approaches taken by many authors, one of the most common and perhaps most
intuitive one is the finite difference method. In such methods, we use a truncated
Taylor series in order to approximate the derivatives appearing in the PDE of
interest. The discretized equation is then reduced to some algebraic system which
may be solved via techniques known to us from numerical linear algebra. We
describe next the finite difference method for approximating the solution to the
initial boundary value problem (IBVP) given by the Heston PDE (3.10) subject
to a mixture of Dirichlet and Neumann boundary conditions given by equations
(3.20a)-(3.20d) for a European call option.

4.1 The IBVP Set-up

Recall from section 3.4.1 that the Heston PDE is subject to the terminal condition
U(S, ν, T ) = max (ST −K, 0) for a European call. If we are to price a European
put then the terminal condition is U(S, ν, T ) = max (K − ST , 0). Therefore, as it
stands, the PDE given by equation (3.10) is backward marching in time. In order
to transform the problem into an IBVP in which we can step forwards in time, we
use the change of variable τ = T − t and note that

∂U

∂t
=
∂U

∂τ

∂τ

∂t
= −∂U

∂τ
. (4.1)

Our Heston PDE becomes

∂U

∂τ
=

1

2
νS2∂

2U

∂S2
+ ρσνS

∂2U

∂ν∂S
+

1

2
σ2ν

∂2U

∂ν2

+ {κ(θ − ν)} ∂U
∂ν

− rU + rS
∂U

∂S
,

(4.2)

where, as before, we have assumed there is no market price of volatility risk (λ = 0).
Note the terminal condition, U(S, ν, T ) = max (ST −K, 0) for a European call, has
now become an initial condition. We will use t to represent the time left to maturity
τ so that we may reserve τ for the truncation error during stability analysis.
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4.2 Boundary Conditions

As we have previously discussed, the spatial variables S and ν can theoretically
take any value in the interval [0,∞). However, in order to successfully implement
any FD scheme computationally we must impose artificial boundary conditions as
S → ∞ and ν → ∞ as when programming we may only consider a finite number
of grid points.

4.2.1 European Call Option

Consider the boundary conditions imposed on a European call option. The bound-
ary conditions we will discuss are well documented in Heston (1993) [24], In’T Hout
and Foulon (2010) [27] and Rouah (2013) [40]. The two types of boundary con-
dition considered are Dirichlet and Neumann boundary conditions. The difference
between the type of boundary condition specified is as follows; a Dirichlet bound-
ary condition is one where the value a solution must take on the boundary of the
domain is specified whilst a Neumann boundary condition is one where the value
the derivative of a solution must take on the boundary of the domain is stated.

There are four boundary conditions to consider as previously stated in Section 3.4.1.
At the lower boundary for the asset price spatial variable, we have S = 0 therefore
the option is worthless. Thus the Dirichlet boundary condition here is

Un
0,j = U(0, νj, tn) = 0 (4.3)

for 0 ≤ j ≤ NV and 0 ≤ n ≤ NT , where NV and NT are the number of volatility and
time steps, respectively. As S becomes larger, the delta of the call tends towards
one (the option price tends towards the asset price as the strike price becomes
negligible). So at S = Smax we apply the Neumann boundary condition1

δSU
n
NS ,j

2∆S
=

∂U

∂S
(Smax, νj, tn) = 1 (4.4)

for 0 ≤ j ≤ NV and 0 ≤ n ≤ NT . It is common for the call option value to increase
as volatility increases. This is restricted by the growth of the stock price. We thus
have at ν = νmax the Dirichlet boundary condition

Un
i,NV

= U(Si, νmax, tn) = Si (4.5)

for 0 ≤ i ≤ NS and 0 ≤ n ≤ NT , where NS is the number of asset steps. Note that
this implies ∂U

∂ν
= 0, when U is originally evaluated at the point (Si, νmax, tn). The

boundary condition at ν = νmin is a little more tricky to establish. Note that when
ν = νmin = 0 substituting ν = 0 into the Heston PDE (4.2) yields the following

∂U

∂t
(S, 0, t) = rS

∂U

∂S
+ κθ

∂U

∂ν
− rU. (4.6)

Note that this is not quite a boundary condition as it includes a time derivative. An
exact solution to this PDE is not available. Furthermore, there is no second-order
derivative present. We thus use a one-sided2 FD approximation for second-order
derivatives.

1Note the notation used for the first derivative; this will be introduced in detail in section 4.4.
2We will discuss one-sided approximations shortly.
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4.3 Construction of a Mesh

4.3.1 Discretization of the Spatial and Time Domains

Let Ω ∈ Rn denote the continuous region on where the PDE of interest is defined.
As a first step, this region is discretized and approximated using a regular grid
denoted by Ω ∈ Ω. It is necessary that the domain Ω is either finite or able to
be truncated, and rectangular. Within this discretized space, the exact solution
U(·) may be approximated by a discrete grid function U(·) that is only defined
at grid points on the discretized domain. The number of grid points is important
as the more grid points there are, the closer to the exact solution will be to the
approximation. The finite difference method allows for the approximation of U(·)
by U(·) through approximations for the differential quotients present in the PDE.

The Heston model is two-dimensional and is spanned by the underlying asset price
S and its volatility ν. As these can only take positive values our spatial domain
for the IBVP is the semi-infinite Ω: (0,∞)× (0,∞). As we must work with a finite
grid for computational reasons, we truncate the domain to [Smin, Smax]×[νmin, νmax]
(where Smax and νmax denote the maximum values for the asset S and its volatility
ν respectively, and Smin and νmin the corresponding minimum values). In effect
the upper limits of the bounded domain act as proxies for the limits S → ∞ and
ν → ∞. Since the boundary conditions are needed to substitute for these limits,
the values at the boundaries are highly reliant on the quality of the conditions
imposed. If the diffusion process3 in the Heston PDE is dominant, then oscillations
caused as a result of poor boundary conditions are minimized. Nevertheless, if a
given boundary condition is of low performance then we must extend the truncated
domain such that the boundaries lie far from the region of interest. For example,
in order to present a robust implementation of the Heston PDE solution with a
negligible error, In’T Hout and Foulon (2010) propose the domain [0, 8K] × [0, 5]
where K is the strike price. In this dissertation, we work with the smaller domain
[0, 3K]× [0, 1.5].

The spacing between grid nodes is important. Uniform grids are those whereby
grid points are equidistant from each other. The boundary conditions are used
as a starting point and the solution U(·) to the IBVP is approximated at each
grid point. Therefore the discretization chosen for the truncated bounded domain
Ω is important as it is directly related to the size of the error. In regions where
approximations are of poor quality it is necessary to employ some technique to
refrain errors from growing without bound. In the uniform grid case accuracy may
be improved by increasing the number of equidistant grid points4. However, this is
computationally expensive. Instead, we may choose to employ a non-uniform grid
whereby the number of grid points remains constant and thus not affect compu-
tational cost. The idea is that we are able to concentrate many grid points near
critical points or points of interest by making the mesh finer near these points. In
particular, we are able to increase the grid points around the region S = K and

3The diffusion process part corresponds to the second order derivatives appearing in the
Heston PDE, see In’T Hout and Foulon [27].

4This technique is known as grid refinement.
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ν = 0 where option prices are often needed. Non-uniform grids greatly improve the
accuracy of the finite difference discretization compared to uniform grids5. When
using non-uniform meshes care must be taken however, as accuracy may decay con-
sequently leading to an increase in the error if the mesh if not sufficiently smooth6.

We first describe the construction steps for a uniform mesh. As before, denote by
Smax and νmax the maximum value of S and ν on the grid, respectively. Similarly,
denote the minimum corresponding values by Smin and νmin. Let

Un
i,j = U(iδS, jδν, nδt) = U(Si, νj, tn)

denote the value of a European call option at time tn when underlying has price
Si and volatility νj. Here, the values (Si, νj, tn) represent a particular node. Dis-
cretization is composed of NS + 1 nodes in the S direction, NV + 1 nodes in the ν
direction, NT + 1 nodes in the t direction.

Express
Si = iδS, 0 ≤ i ≤ NS

νj = jδν, 0 ≤ j ≤ NV

tn = nδt, 0 ≤ t ≤ NT

(4.7)

where (δS,δν,δt) are fixed step sizes in (S, ν, t) in turn. The differences are given
by ∆S = (Smax − Smin)/NS, ∆ν = (νmax − νmin)/NV and ∆t = T/NT , where T is
the maturity of the option. These differences represent the width between two grid
points, for example if moving in the S direction ∆S is the difference between the
points (Si, νj) and (Si+1, νj). We can thus describe the spatial domain as follows

G = {(Si, νj) : 0 ≤ i ≤ NS, 0 ≤ j ≤ NV } . (4.8)

Next we describe a non-uniform grid through coordinate transformations as pre-
sented in the work by Tavella and Randall (2000) [43]. The focus is on increasing
the density of mesh points around the neighbourhood of S = K and ν = 0. First
define the non-uniform mesh in the S-direction 0 = S0 < S1 < ... < Smax = NS

through the transformation

Si = K + c sinh(ξi), i ∈ [0, NS] (4.9)

where in [27] the parameter c(> 0) controls the quantity of mesh points Si lying in
the region around the strike K and is chosen such that c = K/5. The equidistant
points ξi with i ∈ [0, NS] and the respective increments are defined as

ξi = sinh−1

(
−K
c

)
+ i∆ξ (4.10a)

∆ξ =
1

NS

[
sinh−1

(
Smax −K

c

)
− sinh−1

(
−K
c

)]
. (4.10b)

5In’T Hout and Foulon (2010) [27] explain that this is due to the initial condition U(S, ν, 0) =
max (S −K, 0) (in the case of a call option) admitting a discontinuity at S = K in the first
derivative and for ν approximately zero, the PDE is dominated by the first derivative term.

6The mesh as proposed by [27] is smooth. It is explained that the mesh is smooth if there exist
R 3 c0,c1,c2 > 0 constants such that the increments ∆Si = Si −Si−1 satisfy c0∆ξ ≤ ∆Si ≤ c1∆ξ
and |∆Si+1 −∆Si|≤ c2(∆ξ)2.
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Similarly, the non-uniform mesh in the ν-direction 0 = ν0 < ν1 < ... < νmax = NV

is defined through the transformation

νj = d sinh(j∆η), j ∈ [0, NV ], (4.11)

where

∆η =
1

NV

sinh−1

(
Vmax

d

)
. (4.12)

In [27] the parameter d(> 0) controls the quantity of mesh points νj lying in the
region around ν = 0 and is chosen such that d = Vmax/500. An example of a
non-uniform mesh is shown in Figure 4.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

ν

S

Figure 4.1: Illustration of a non-uniform grid with
Smax = 300 and νmax = 1.5.

For the time discretization technique for the Heston IBVP we let ∆t > 0 be a
given time step, where the temporal grid points7 can be generated by tn = n∆t for
n = 0, 1, 2, ..., NT . We progress to describe finite difference methods.

7There may be settings where the use of non-equidistant grids in the time direction is beneficial
(eg. Bermudan options where the holder has the right to exercise on predetermined dates).
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4.4 Finite Difference Operators

4.4.1 Central Differences

In this section we derive approximations to each derivative quotient appearing
in the Heston PDE (4.2) by truncating a Taylor series. To this end, we introduce
some fundamental notions in a general setting and later apply these to our problem
bearing in mind the approximations that are of interest to us. We work with finite
difference approximations for internal mesh points in the case that the grid used is
uniform. Given a step size ∆, define the finite differences via the compact notation
for ease of reference (note that x is used to denote a general spatial variable):

Forward Differences

∆+tU(x, t) := U(x, t+∆t)− U(x, t) (4.13a)

∆+xU(x, t) := U(x+∆x, t)− U(x, t) (4.13b)

Backward Differences

∆−tU(x, t) := U(x, t)− U(x, t−∆t) (4.14a)

∆−xU(x, t) := U(x, t)− U(x−∆x, t) (4.14b)

Central Differences

δtU(x, t) := U(x, t+∆t)− U(x, t−∆t) (4.15a)

δxU(x, t) := U(x+∆x, t)− U(x−∆x, t) (4.15b)

Second Order Central Differences

δ2xU(x, t) := U(x+∆x, t)− 2U(x, t) + U(x−∆x, t) (4.16)

Note that we are able to derive expressions for the derivative terms present in
the discretized form of the Heston PDE (which we write out in full according to
a particular scheme in subsequent sections) by considering Taylor series expan-
sions of the forward and backward differences. Assuming that the function being
approximated is smooth, Taylor expansions are as follows8

∆+tU(x, t) = U(x, t+∆t)− U(x, t)

=
∂U

∂t
∆t+

1

2!

∂2U

∂t2
∆t2 +

1

3!

∂3U

∂t3
∆t3 + h.o.t. (4.17a)

∆−tU(x, t) = U(x, t)− U(x, t−∆t)

=
∂U

∂t
∆t− 1

2!

∂2U

∂t2
∆t2 +

1

3!

∂3U

∂t3
∆x3 + h.o.t. (4.17b)

∆+xU(x, t) = U(x+∆x, t)− U(x, t)

=
∂U

∂x
∆x+

1

2!

∂2U

∂x2
∆x2 +

1

3!

∂3U

∂x3
∆x3 + h.o.t. (4.17c)

∆−xU(x, t) = U(x, t)− U(x−∆x, t)

=
∂U

∂x
∆x− 1

2!

∂2U

∂x2
∆x2 +

1

3!

∂3U

∂x3
∆x3 + h.o.t. (4.17d)

8Note that h.o.t. stands for higher order terms.
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From equations (4.17c) and (4.17d) we can obtain a finite difference approximation
for the quotient ∂U

∂x
. Write

∆+xU(x, t) + ∆−xU(x, t) = U(x+∆x, t)− U(x−∆x, t)

= 2
∂U

∂x
∆x+

1

3

∂3U

∂x3
∆x3 + h.o.t.

⇒ ∂U

∂x
=
δxU(x, t)

2∆x
+O(∆x2).

(4.18)

Similarly, we can obtain a finite difference approximation for the quotient ∂2U
∂x2 by

taking the difference between equations (4.17c) and (4.17d) (this is also directly a
Taylor series expansion of the second order central difference δ2xU(x, t)):

∆+xU(x, t)−∆−xU(x, t) = U(x+∆x, t)− 2U(x, t) + U(x−∆x, t)

=
∂2U

∂x2
∆x2 +

1

12

∂4U

∂x4
∆x4 + h.o.t.

⇒ ∂2U

∂x2
=
δ2xU(x, t)

∆x2
+O(∆x2).

(4.19)

We use a forward difference for the time derivative. This may be easily obtained
by rearranging equation (4.17a):

∂U

∂t
=

∆+tU(x, t)

∆t
+O(∆t). (4.20)

Applying these approximations to the Heston PDE we can adopt the following
notations

∂U

∂t
≈ ∆+tU(S, ν, t)

∆t
(4.21a)

∂U

∂S
≈ δSU(S, ν, t)

2∆S
(4.21b)

∂U

∂ν
≈ δνU(S, ν, t)

2∆ν
(4.21c)

∂2U

∂S2
≈ δ2SU(S, ν, t)

∆S2
(4.21d)

∂2U

∂ν2
≈ δ2νU(S, ν, t)

∆ν2
. (4.21e)

It remains to find the finite difference approximation quotient for the cross deriva-
tive term ∂2U

∂Sν
in the Heston PDE arising from the correlation between the asset

and variance processes. In order to find such an approximation the following Taylor
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expansions are useful

U(S +∆S, ν +∆ν, t) = U(S, ν, t) +
∂U

∂S
∆S +

∂U

∂ν
∆ν +

1

2

∂2U

∂S2
∆S2

+
∂2U

∂S∂ν
∆S∆ν +

1

2

∂2U

∂ν2
∆ν2 +

1

3!

∂3U

∂S3
∆S3

+
3

3!

∂3U

∂S2∂ν
∆S2∆ν +

3

3!

∂3U

∂S∂ν2
∆S∆ν2 +

1

3!

∂3U

∂ν3
+ h.o.t.

(4.22a)

U(S −∆S, ν −∆ν, t) = U(S, ν, t)− ∂U

∂S
∆S − ∂U

∂ν
∆ν +

1

2

∂2U

∂S2
∆S2

+
∂2U

∂S∂ν
∆S∆ν +

1

2

∂2U

∂ν2
∆ν2 − 1

3!

∂3U

∂S3
∆S3

− 3

3!

∂3U

∂S2∂ν
∆S2∆ν − 3

3!

∂3U

∂S∂ν2
∆S∆ν2 − 1

3!

∂3U

∂ν3
+ h.o.t.

(4.22b)

U(S −∆S, ν +∆ν, t) = U(S, ν, t)− ∂U

∂S
∆S +

∂U

∂ν
∆ν +

1

2

∂2U

∂S2
∆S2

− ∂2U

∂S∂ν
∆S∆ν +

1

2

∂2U

∂ν2
∆ν2 − 1

3!

∂3U

∂S3
∆S3

+
3

3!

∂3U

∂S2∂ν
∆S2∆ν − 3

3!

∂3U

∂S∂ν2
∆S∆ν2 +

1

3!

∂3U

∂ν3
+ h.o.t.

(4.22c)

U(S +∆S, ν −∆ν, t) = U(S, ν, t) +
∂U

∂S
∆S − ∂U

∂ν
∆ν +

1

2

∂2U

∂S2
∆S2

− ∂2U

∂S∂ν
∆S∆ν +

1

2

∂2U

∂ν2
∆ν2 +

1

3!

∂3U

∂S3
∆S3

− 3

3!

∂3U

∂S2∂ν
∆S2∆ν +

3

3!

∂3U

∂S∂ν2
∆S∆ν2 − 1

3!

∂3U

∂ν3
+ h.o.t.

(4.22d)

From these equations we have that

U(S +∆S, ν +∆ν, t) + U(S −∆S, ν −∆ν, t)

− U(S −∆S, ν +∆ν, t)− U(S +∆S, ν −∆ν, t) ≈ 4
∂2U

∂S∂ν
∆S∆ν,

(4.23)
such that

∂2U

∂S∂ν
≈U(S +∆S, ν +∆ν, t) + U(S −∆S, ν −∆ν, t)

4∆S∆ν

+
−U(S −∆S, ν +∆ν, t)− U(S +∆S, ν −∆ν, t)

4∆S∆ν
.

(4.24)

Adopt the following notation for the mixed derivative term

∂2U

∂S∂ν
≈ δ2SνU(S, ν, t)

4∆S∆ν
. (4.25)
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Finally, describe the FD approximations at a grid point (Si, νj, tn) as follows

θ =
∂U

∂t
≈
Un+1
i,j − Un

i,j

∆t
(4.26a)

∆S =
∂U

∂S
≈
Un
i+1,j − Un

i−1,j

2∆S
(4.26b)

∆V =
∂U

∂ν
≈
Un
i,j+1 − Un

i,j−1

2∆ν
(4.26c)

ΓS =
∂2U

∂S2
≈
Un
i−1,j − 2Un

i,j + Un
i+1,j

∆S2
(4.26d)

ΓV =
∂2U

∂ν2
≈
Un
i,j−1 − 2Un

i,j + Un
i,j+1

∆ν2
(4.26e)

∂2U

∂S∂ν
≈
Un
i+1,j+1 + Un

i−1,j−1 − Un
i−1,j+1 − Un

i+1,j−1

4∆S∆ν
. (4.26f)

Remark. We were able to truncate the Taylor series by use of ‘big O’ notation,
which we define below9.

Definition 4.4.1. Let f(x) and g(x) be two functions defined on a subset of the
real line. Then write

f(x) = O(g(x)) as x→ ∞ (4.27)

if and only if ∃M > 0 constant such that for all sufficiently large values of x we
have that f(x) will be at most M multiplied by the absolute value of g(x). This
means that f(x) = O(g(x)) if and only if ∃M > 0 a real constant and x0 ∈ R
such that

|f(x)|≤M |g(x)| ∀ x ≥ x0 (4.28)

�

Applying this definition, we are able to write equation (4.17c) for example, since
the following holds∣∣∣∣ 13! ∂3U∂S3

∆S3 +
1

4!

∂4U

∂S4
∆S4 + ...

∣∣∣∣ ≤M |∆S3| as ∆S → 0. (4.29)

4.4.2 One-sided Differences

The central differences described in the previous section are not applicable on the
entire domain. This is because at the boundaries of the domain we fail to find
two direct neighbours to approximate the given boundary grid node. So at the
boundaries we cannot apply a central difference. For example we may be at the
boundary Un

i,0 corresponding to ν = 0 and at this node the value Un
i,−1 won’t

be available to evaluate the second central difference δ2νU
n
i,j. In this case we can

apply one-sided FD schemes. For instance at the boundary where ν = 0 the first
derivative may be approximated via a one-sided forward difference scheme. Again

9Extended definition may we found in Wikipedia http://en.wikipedia.org/wiki/Big˙O˙nota-
tion.
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we use Taylor series expansions. First seek an expression for the first derivative in
terms of Un

i,j−1, U
n
i,j and U

n
i,j+1

η0U(S, ν, t)+η1U(S, ν +∆ν, t) + η2U(S, ν + 2∆ν)

= η0U(S, ν, t) + η1

(
U(S, ν, t) +

(
∂U

∂ν

)
i,j

∆ν +
1

2

(
∂2U

∂ν2

)
i,j

∆ν2 +O(∆ν3)

)

+ η2

(
U(S, ν, t) +

(
∂U

∂ν

)
i,j

2∆ν +
1

2

(
∂2U

∂ν2

)
i,j

(2∆ν)2 +O(∆ν3)

)

= (η0 + η1 + η2)U(S, ν, t) + (η1∆ν + 2η2∆ν)

(
∂U

∂ν

)
i,j

+

(
η1∆ν

2

2
+ 2η2∆ν

2

)(
∂2U

∂ν2

)
i,j

+O(∆ν3).

(4.30)
In order to isolate the first derivative term

(
∂U
∂ν

)
i,j

we require

η0 + η1 + η2 = 0
η1∆ν + 2η2∆ν = 1
η1∆ν2

2
+ 2η2∆ν

2 = 0

 ⇒
η0 = − 3

2∆ν

η1 =
4

2∆ν

η2 = − 1
2∆ν

.

If we now substitute the expressions for η0, η1 and η2 into equation (4.30) we obtain
an approximation to the first derivative

δ+νU(S, ν, t) =
−3U(S, ν, t) + 4U(S, ν +∆ν, t)− U(S, ν + 2∆ν, t)

2∆ν

− 1

3!

(
∂3U

∂ν3

)
i,j

∆ν2 +O(∆ν3),
(4.31)

or in our favoured notation

δ+νU
n
i,j ≈

−3Un
i,j + 4Un

i,j+1 − Un
i,j+2

2∆ν
. (4.32)

This is known as the second-order correct, forward difference approximation to the
first derivative. In general, one-sided difference schemes may be used to approx-
imate non-boundary nodes also. As there are some disadvantages (see Section 7
De Graaf (2012) [12] for details) to central differences, a useful one-sided alter-
native is available for use at interior grid points to replace approximations to the
second-order derivative. Furthermore, use of backward difference approximations
is convenient when the drift terms of the asset and variance processes in the Hes-
ton PDE become negative. This allows the dissipation of the effect of oscillations
resulting from the negativity of these coefficients on the solution. For example the
drift term for the variance process κ(θ − ν) can become negative whenever θ < ν.
A backward one-sided difference may be derived as before10

δ−ν ≈
Un
i,j−2 − 4Un

i,j−1 + 3Un
i,j

2∆ν
. (4.33)

10This improvement is later described in further detail and is known as an upwinding technique.
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Similarly, we can derive one-sided second order accurate approximations to the
second-order derivative, although these are not used in our implementation,

δ2+νU
n
i,j ≈

2Un
i,j − 5Un

i,j+1 + 4Un
i,j+2 − Un

i,j+3

∆ν2
(4.34)

δ2−νU
n
i,j ≈

−Un
i,j−3 + 4Un

i,j−2 − 5Un
i,j−1 + 2Un

i,j

∆ν2
. (4.35)

4.5 Explicit Finite Difference Scheme

In this section we use the discretized form of the Heston PDE (4.2) and implement
the Explicit Finite Difference Method on a uniform grid (equally spaced intervals
for both state variables). Substituting the FD approximations into the Heston PDE
(3.10) we obtain

Un+1
i,j − Un

i,j

∆t
=

1

2
S2
i νj

Un
i−1,j − 2Un

i,j + Un
i+1,j

∆S2
+

1

2
σ2νj

Un
i,j−1 − 2Un

i,j + Un
i,j+1

∆ν2

+ rSi

Un
i+1,j − Un

i−1,j

2∆S
+ κ(θ − νj)

Un
i,j+1 − Un

i,j−1

2∆ν
− rUn

i,j

+
1

4
ρσSiνj

Un
i+1,j+1 + Un

i−1,j−1 − Un
i−1,j+1 − Un

i+1,j−1

∆S∆ν
.

(4.36)

Using our more compact notation

∆+tU
n
i,j

∆t
=

1

2
S2
i νj

δ2SU
n
i,j

∆S2
+

1

4
ρσSiνj

δ2SνU
n
i,j

∆S∆ν
+

1

2
σ2νj

δ2νU
n
i,j

∆ν2
+ rSi

δSU
n
i,j

2∆S

+ κ(θ − νj)
δνU

n
i,j

2∆ν
− rUn

i,j.

(4.37)

where we have used a forward difference for the time derivative. Rearrange this
equation grouping common terms to obtain

Un+1
i,j =

[
1−∆t

(
S2
i νj

∆S2
+
σ2νj
∆ν2

+ r

)]
Un
i,j

+

[
1

2
∆t

(
S2
i νj

∆S2
− rSi

∆S

)]
Un
i−1,j +

[
1

2
∆t

(
S2
i νj

∆S2
+
rSi

∆S

)]
Un
i+1,j

+

[
1

2
∆t

(
σ2νj
∆ν2

− κ(θ − νj)

∆ν

)]
Un
i,j−1 +

[
1

2
∆t

(
σ2νj
∆ν2

+
κ(θ − νj)

∆ν

)]
Un
i,j+1

+
1

4

∆tρσSiνj
∆S∆ν

[
Un
i+1,j+1 + Un

i−1,j−1 − Un
i−1,j+1 − Un

i+1,j−1

]
.

(4.38)
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If we now define as previously Si = i∆S, νj = j∆ν we can write a the simplified
form11 of the discretized PDE

Un+1
i,j − Un

i,j

∆t
=

1

2
j∆νi2∆S2

Un
i−1,j − 2Un

i,j + Un
i+1,j

∆S2
+

1

2
σ2j∆ν

Un
i,j−1 − 2Un

i,j + Un
i,j+1

∆ν2

+ ρσij∆ν∆S
Un
i+1,j+1 + Un

i−1,j−1 − Un
i−1,j+1 − Un

i+1,j−1

4∆S∆ν

+ ri∆S
Un
i+1,j − Un

i−1,j

2∆S
+ κ(θ − j∆ν)

Un
i,j+1 − Un

i,j−1

2∆ν
− rUn

i,j.

(4.39)
Rewrite this expression via a set of coefficients as follows

Un+1
i,j = An

i,jU
n
i,j +Bn

i,jU
n
i−1,j + Cn

i,jU
n
i+1,j +Dn

i,jU
n
i,j−1 + En

i,jU
n
i,j+1

F n
i,j(U

n
i+1,j+1 + Un

i−1,j+1 + Un
i+1,j−1 + Un

i−1,j−1),
(4.40)

where

An
i,j = 1−∆t

(
i2j∆ν +

σ2j

∆ν
+ r

)
(4.41a)

Bn
i,j =

1

2
i∆t (ij∆ν − r) (4.41b)

Cn
i,j =

1

2
i∆t (ij∆ν + r) (4.41c)

Dn
i,j =

1

2

∆t

∆ν

(
σ2j − κ(θ − j∆ν)

)
(4.41d)

En
i,j =

1

2

∆t

∆ν

(
σ2j + κ(θ − j∆ν)

)
(4.41e)

F n
i,j =

1

4
ijρσ∆t. (4.41f)

The explicit scheme is very popular due to its tractability and ease of implementa-
tion. Because of its conditional stability however, other methods are often sought
in practice.

An illustration of the scheme is given in Figure 4.2. The Heston parameter values
chosen are κ = 2, θ = 0.2, σ = 0.3, ρ = 0.8, r = 0.03, q = 0, λ = 0, K = 100 and
T = 1 year. Within the function we have set Smax = 200, Vmax = 1, number of
asset steps NS = 40, number of volatility steps NV = 20 and number of time steps
NT = 4000.

11Note that when coding in Matlab we use the PDE (4.38) to simplify understanding of the
code.
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Figure 4.2: Illustration of the Heston explicit
scheme for a European call option.

4.6 Implicit Finite Difference Scheme

We now implement the implicit finite difference method. Using a backward differ-
ence in time and central differences in space variables S and ν, we have

Un+1
i,j − Un

i,j

∆t
=

1

2
S2
i νj

Un+1
i−1,j − 2Un

i,j + Un+1
i+1,j

∆S2
+

1

2
σ2νj

Un+1
i,j−1 − 2Un+1

i,j + Un+1
i,j+1

∆ν2

+ rSi

Un+1
i+1,j − Un+1

i−1,j

2∆S
+ κ(θ − νj)

Un+1
i,j+1 − Un+1

i,j−1

2δν
− rUn+1

i,j

+
1

4
ρσSiνj

Un+1
i+1,j+1 + Un+1

i−1,j−1 − Un+1
i−1,j+1 − Un+1

i+1,j−1

∆S∆ν
,

(4.42)
which in our more compact notation becomes

∆−tU
n+1
i,j

∆t
=

1

2
S2
i νj

δ2SU
n+1
i,j

∆S2
+

1

4
ρσSiνj

δ2SνU
n+1
i,j

∆S∆ν
+

1

2
σ2νj

δ2νU
n+1
i,j

∆ν2
+ rSi

δSU
n+1
i,j

2∆S

+ κ(θ − νj)
δνU

n+1
i,j

2δν
− rUn+1

i,j .

(4.43)
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Rearrange grouping common terms to obtain[
1 + ∆t

(
S2
i νj

∆S2
+
σ2νj
∆ν2

+ r

)]
Un+1
i,j

+

[
1

2
∆t

(
−S

2
i νj

∆S2
+
rSi

∆S

)]
Un+1
i−1,j +

[
1

2
∆t

(
−S

2
i νj

∆S2
− rSi

∆S

)]
Un+1
i+1,j

+

[
1

2
∆t

(
−σ

2νj
∆ν2

+
κ(θ − νj)

∆ν

)]
Un+1
i,j−1 +

[
1

2
∆t

(
−σ

2νj
∆ν2

− κ(θ − νj)

∆ν

)]
Un+1
i,j+1

− 1

4

∆tρσSiνj
∆S∆ν

[
Un+1
i+1,j+1 + Un+1

i−1,j−1 − Un+1
i−1,j+1 − Un+1

i+1,j−1

]
= Un

i,j.

(4.44)
Simplified version of the scheme

Un+1
i,j − Un

i,j

∆t
=

1

2
j∆νi2∆S2

Un+1
i−1,j − 2Un+1

i,j + Un+1
i+1,j

∆S2
+

1

2
σ2j∆ν

Un+1
i,j−1 − 2Un+1

i,j + Un+1
i,j+1

∆ν2

+ ρσij∆ν∆S
Un+1
i+1,j+1 + Un+1

i−1,j−1 − Un+1
i−1,j+1 − Un+1

i+1,j−1

4∆S∆ν

+ ri∆S
Un+1
i+1,j − Un+1

i−1,j

2∆S
+ κ(θ − j∆ν)

Un+1
i,j+1 − Un+1

i,j−1

2∆ν
− rUn+1

i,j .

(4.45)
If we define the following coefficients

an+1
i,j = 1 +∆t

(
i2j∆ν +

σ2j

∆ν
+ r

)
(4.46a)

bn+1
i,j =

1

2
i∆t (−ij∆ν + r) (4.46b)

cn+1
i,j =

1

2
i∆t (−ij∆ν − r) (4.46c)

dn+1
i,j =

1

2

∆t

∆ν

(
−σ2j + κ(θ − j∆ν)

)
(4.46d)

en+1
i,j =

1

2

δt

∆ν

(
−σ2j − κ(θ − j∆ν)

)
(4.46e)

fn+1
i,j =

1

4
ijρσ∆t (4.46f)

then we may rewrite the implicit scheme as follows

an+1
i,j Un+1

i,j + bn+1
i,j Un

i−1,j + cn+1
i,j Un+1

i+1,j + dn+1
i,j Un+1

i,j−1 + en+1
i,j Un+1

i,j+1

+ fn+1
i,j (Un+1

i+1,j+1 + Un+1
i−1,j+1 + Un+1

i+1,j−1 + Un+1
i−1,j−1) = Un

i,j.
(4.47)

The implicit scheme is unconditionally stable.
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4.7 The θ′-Scheme

If we take a weighted average12 of both explicit and implicit schemes we obtain the
θ′-Scheme, which is as follows

∆+tU
n
i,j

∆t
= θ′

[
1

2
S2
i νj

δ2SU
n+1
i,j

∆S2
+

1

4
ρσSiνj

δ2SνU
n+1
i,j

∆S∆ν
+

1

2
σ2νj

δ2νU
n+1
i,j

∆ν2
+ rSi

δSU
n+1
i,j

2∆S

+κ(θ − νj)
δνU

n+1
i,j

2δν
− rUn+1

i,j

]

+ (1− θ′)

[
1

2
S2
i νj

δ2SU
n
i,j

∆S2
+

1

4
ρσSiνj

δ2SνU
n
i,j

∆S∆ν
+

1

2
σ2νj

δ2νU
n
i,j

∆ν2
+ rSi

δSU
n
i,j

2∆S

+κ(θ − νj)
δνU

n
i,j

2∆ν
− rUn

i,j

]
,

(4.48)
or in full notation

Un+1
i,j − Un

i,j

∆t
= θ′

(
1

2
j∆νi2∆S2

Un+1
i−1,j − 2Un+1

i,j + Un+1
i+1,j

∆S2
+

1

2
σ2j∆ν

Un+1
i,j−1 − 2Un+1

i,j + Un+1
i,j+1

∆ν2

+ ρσij∆ν∆S
Un+1
i+1,j+1 + Un+1

i−1,j−1 − Un+1
i−1,j+1 − Un+1

i+1,j−1

4∆S∆ν

+ ri∆S
Un+1
i+1,j − Un+1

i−1,j

2∆S
+ κ(θ − j∆ν)

Un+1
i,j+1 − Un+1

i,j−1

2∆ν
− rUn+1

i,j

)

+ (1− θ′)

(
1

2
j∆νi2∆S2

Un
i−1,j − 2Un

i,j + Un
i+1,j

∆S2

+σ2j∆ν
1

2

Un
i,j−1 − 2Un

i,j + Un
i,j+1

∆ν2

+ ρσij∆ν∆S
Un
i+1,j+1 + Un

i−1,j−1 − Un
i−1,j+1 − Un

i+1,j−1

4∆S∆ν

+ ri∆S
Un
i+1,j − Un

i−1,j

2∆S
+ κ(θ − j∆ν)

Un
i,j+1 − Un

i,j−1

2∆ν
− rUn

i,j

)
,

(4.49)
where θ′ ∈ [0, 1]. We present the following important cases:

• θ′ = 0 ⇒ explicit Euler finite difference scheme

• θ′ = 1
2
⇒ Crank-Nicolson scheme13

• θ′ = 1 ⇒ Euler fully implicit scheme

12This is known as the θ′-Scheme. Note the use of a tilde is in order to distinguish from the
Heston model parameter θ representing the level of mean reversion for the variance process. Some
authors denote this parameter by η.

13Such that the Crank-Nicolson scheme is an average of the explicit and implicit schemes.
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4.8 ADI Scheme

To solve multi-dimensional initial-value problems (IVPs) (for example the two di-
mensional Heston model PDE plus its boundary conditions), we must employ tech-
niques such as the θ′-schemes. In particular, we have seen that whilst easy to im-
plement, the explicit scheme is conditionally stable restricting our choice in asset
and time steps. On the other hand, implicit schemes such as the Crank-Nicolson,
although unconditionally stable, mean that we must perform several iterations
in each time step, which is computationally expensive when dealing with two or
more dimensions. For this reason, we turn to alternating-direction implicit (ADI)
schemes, which are a type of Operator Splitting Scheme (OPS) first developed
by Peaceman and Rachford (1955) [37]. ADI schemes involve both explicit and
implicit computations. They are essentially a time splitting method which works
by breaking down multi-dimensional problems involving large systems of equations
into sub problems treating a given spatial direction individually. They require solv-
ing a simple tridiagonal system of equations. They are based on a finite difference
representation of the PDE we are solving.

We represent the θ′-scheme in matrix form by the following system

(I− θ′∆tA)Un+1 = (I+ (1− θ′)∆tA)Un, (4.50)

where A is the matrix of coefficients and I is the identity matrix and both matrices
are of size (NS − 1)(NV − 1)× (NS − 1)(NV − 1)14. Since the initial condition U0

is known as this is the option payoff at expiry, we can work from expiry by filling
in a matrix with this boundary condition and using the matrix A to then obtain
U1, U2 and so on until the final value UNT is reached. This means for every time
step ∆t we solve the system (4.50). We note that the initial matrix U0 will contain
entries corresponding to the payoff so that in our European call option example
the entries at each node will be S − K whenever S > K and 0 otherwise. The
order in which the entries appear in the matrix U0 depends on the positioning of
the components. We will see later on that to solve system (4.50) we must invert
the matrix appearing on the LHS such that the system becomes

Un+1 = (I− θ′∆tA)−1(I+ (1− θ′)∆tA)Un. (4.51)

From the matrix representation of the θ′-scheme (4.50) we can derive as before
three particular cases: when θ′ = 0 we obtain the fully explicit scheme, when
θ′ = 1

2
the Crank-Nicolson scheme and when θ′ = 1 the fully implicit scheme. At

this point we are able to exploit the sparse nature of the matrix A in order to
increase computational efficiency. The algorithm chosen for our implementation is
the Tridiagonal Matrix Algorithm (also known as the Thomas algorithm), however
an ample amount of algorithms have been proposed. For example the line Jacobi
method may be applied to general difference schemes in two and three dimensions
(see Duffy (2006) [15]). Also, other prominent iterative methods include

• Gauss-Seidel relaxation scheme

• Successive over-relaxation (SOR) scheme

14This can be clearly seen during the implementation stage.
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• Symmetric successive over-relaxation (SSOR) scheme

The three listed methods above are more efficient than Jacobi methods. For further
details one may approach Thomas (1999) [44] for example.

In the ADI scheme, each time step is split into sub-steps. In each sub-step one space
direction is treated implicitly whilst the other is treated explicitly. In a subsequent
sub-step the next direction is treated implicitly whilst the other is treated explicitly.
As the implicit scheme is the one that presents a matrix inversion problem, in every
sub-step only one matrix needs to be inverted. We decompose the matrix A into
sub-matrices according to the classification presented in Craig and Sneyd (1988)
[11]

A = A0 + A1 + A2, (4.52)

where we have chosen the matrix A0 to represent the mixed spatial derivative term
in (4.2) and in line with literature the matrices A1 and A2 correspond to all spatial
derivatives in the S and ν directions respectively. The term rU in the PDE (4.2)
is evenly distributed into the matrices A1 and A2. To this end we have

A0 =
1

4
ρσνS

∆t

∆S∆ν
δ2Sν (4.53a)

A1 =
1

2
νS2 ∆t

∆S2
δ2S +

1

2
rS

∆t

∆S
δS − 1

2
r∆t (4.53b)

A2 =
1

2
σ2ν

∆t

∆ν2
δ2ν +

1

2
κ(θ − ν)

∆t

∆ν
δν −

1

2
r∆t, (4.53c)

where as before

δSUi,j = Ui+1,j − Ui−1,j (4.54a)

δ2SUi,j = Ui−1,j − 2Ui,j + Ui+1,j (4.54b)

δ2SνUi,j = Ui+1,j+1 + Ui−1,j−1 − Ui−1,j+1 − Ui+1,j−1 (4.54c)

δνUi,j = Ui,j+1 − Ui,j−1 (4.54d)

δ2νUi,j = Ui,j−1 − 2Ui,j + Ui,j+1. (4.54e)

With this notation we are able to write the θ′-scheme in terms of A0, A1 and A2

with respect to the node (Si, νj, tn) as follows

(1−θ′∆tA1−θ′∆tA2)U
n+1
i,j = (1+A0∆t+(1−θ′)∆tA1+(1−θ′∆tA2)U

n
i,j. (4.55)

Next we use approximate factorization to reduce the complexity of the linearized
scheme. First note that (1−θ∆tA1)(1−θ∆tA2) = 1−θ∆tA1−θ∆tA2+θ

2∆t2A1A2.
Then add θ2∆t2A1A2U

n+1 to both sides of (4.55) to obtain

(1− θ∆tA1 − θ∆tA2+θ
2∆t2A1A2)U

n+1
i,j =

(1 + ∆tA0 + (1− θ)∆tA1 + (1− θ)∆tA2 + θ2∆t2A1A2)U
n
i,j

+ θ2∆t2A1A2(U
n+1
i,j − Un

i,j)︸ ︷︷ ︸
O(∆t3)

+O(∆t3).

(4.56)
We can combine the term θ2∆t2A1A2(U

n+1 − Un) ∼ O(∆t3) with the error term
maintaining the order of accuracy15. Therefore, the scheme is still second order in

15Note that Un+1
i,j − Un

i,j ∼ O(∆t) so that the term θ2∆t2A1A2(U
n+1 − Un) ∼ O(∆t3).
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the time and spatial variables. Factorizing gives us

(1− θ∆tA1)(1− θ∆tA2)U
n+1
i,j = (1 + ∆tA0 + (1− θ)∆tA1 + (1− θ)∆tA2

+ θ2∆t2A1A2)U
n
i,j +O(∆t3)

(4.57)

In practice, the ADI scheme performs a single fully explicit step. It then performs
a correction step such that it covers one direction implicitly whilst covering the
others explicitly. In a subsequent step, another direction is done implicitly whilst
the rest explicitly and so on. So the method is composed of intermediate steps
known as the correction steps. The idea is to improve efficiency and computation
time whilst retaining the properties of stability and consistency.

In general, ADI schemes were not developed to cope with a mixed derivative term
as is present in the Heston PDE and were thus accordingly adapted (see In’t Hout
and Foulon [27]).

4.8.1 Douglas-Rachford Scheme

The simplest of the ADI schemes is the Douglas-Rachford (DR) scheme16 described
in detail in [14]. The scheme is composed of the following steps17

U∗
i,j − Un

i,j

∆t
= θ′A1U

∗
i,j + A0U

n
i,j + (1− θ′)A1U

n
i,j + A2U

n
i,j (4.58a)

Un+1
i,j − U∗

i,j

∆t
= θ′A2(U

n+1
i,j − Un

i,j). (4.58b)

This may be written in the more common computational form as follows

(1− θ′∆tA1)U
∗
i,j = (1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U

n
i,j

(1− θ′∆tA2)U
n+1
i,j = U∗

i,j − θ′∆tA2U
n
i,j.

(4.59)

The Douglas-Rachford time splitting scheme is unconditionally stable whenever
θ′ ≥ 1

2
. The scheme is second order accurate in time and spatial variables.

4.8.2 The Craig and Sneyd Scheme

Further ADI schemes stem from the Douglas scheme with the aim of improving
accuracy and stability. The Craig and Sneyd (CS) scheme [11] was developed in
1988 in an attempt to improve accuracy and stability of the DR scheme. The CS
iterative scheme is second-order accurate in time and space and is unconditionally
stable whenever θ′ ≥ 1

2
, as in the Douglas-Rachford scheme. The scheme is shown

to be less effective for higher dimensional problems due to the presence of the mixed
derivative term.

16Or just Douglas scheme.
17The DR scheme is commonly written with U

n+ 1
2

i,j in place of U∗
i,j , either option can be

understood as a sort of ‘half-step’.
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Craig and Sneyd:

(1− θ′∆tA1)Y1 = (1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n (4.60a)

(1− θ′∆tA2)Y2 = Y1 − θ′∆tA2U
n (4.60b)

(1− θ′∆tA1)Y3 = (1− θ′∆tA1)Y1 +
1

2
∆tA0(Y2 − Un) (4.60c)

(1− θ′∆tA2)Y4 = Y3 − θ′∆tA2U
n (4.60d)

Un+1 = Y4. (4.60e)

4.8.3 Modified Craig and Sneyd Scheme

The full modified Craig and Sneyd (MCS) scheme step-by-step is outlined first,
then the concise Matlab implementation outline is presented.

Modified Craig and Sneyd:

(1− θ′∆tA1)Y1 = (1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n (4.61a)

(1− θ′∆tA2)Y2 = Y1 − θ′∆tA2U
n (4.61b)

Y3 = Y0 + θ′∆tA0(Y2 − Un)

= (1− θ′∆tA1)Y1 + θ′∆tA1U
n + θ′∆tA0(Y2 − Un) (4.61c)

Y4 = Y3 + (
1

2
− θ′)∆tA(Y2 − Un) (4.61d)

(1− θ′∆tA1)Y5 = Y4 − θ′∆tA1U
n

= (1− θ′∆tA1)Y1 +������
θ′∆tA1U

n + θ′∆tA0(Y2 − Un)

+ (
1

2
− θ′)∆tA(Y2 − Un)−������

θ′∆tA1U
n (4.61e)

(1− θ′∆tA2)Y6 = Y5 − θ′∆tA2U
n (4.61f)

Un+1 = Y6. (4.61g)

The concise version as computed in Matlab is as follows.

(1− θ′∆tA1)Y1 = (1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n (4.62a)

(1− θ′∆tA2)Y2 = Y1 − θ′∆tA2U
n (4.62b)

(1− θ′∆tA1)Y3 = (1− θ′∆tA1)Y1 + θ′∆tA0(Y2 − Un) + (
1

2
− θ′)∆tA(Y2 − Un)

(4.62c)

(1− θ′∆tA2)Y4 = Y3 − θ′∆tA2U
n (4.62d)

Un+1 = Y4. (4.62e)

Notice that when θ′ = 1
2
we obtain the Craig and Sneyd scheme.
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4.8.4 The Hundsdorfer and Verwer Scheme

The Hundsdorfer and Verwer (HV) scheme was originally developed to obtain a
numerical solution to convection-diffusion-reaction equations with applications to
atmospheric dispersion problems, see [46] (one can also see a review of the book by
Hundsdorfer and Verwer in [26]).

Hundsdorfer and Verwer:

(1− θ′∆tA1)Y1 = (1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n (4.63a)

(1− θ′∆tA2)Y2 = Y1 − θ′∆tA2U
n (4.63b)

(1− θ′∆tA1)Y3 = (1− θ′∆tA1)Y1 + µ(∆tA0 + (1− θ′)∆tA1)(Y2 − Un) (4.63c)

(1− θ′∆tA2)Y4 = Y3 − θ′∆tA2U
n (4.63d)

Un+1 = Y4. (4.63e)

When implementing the HV scheme, the solution matrices at expiry (for which the
function gives an output) are very similar. However if we type format long18

into the Matlab command line, it can be seen that they are actually different. An
illustration of the option price grid at NT = 4000 for different ADI schemes is given
next, with θ′ = 1

2
for DR, CS and MCS schemes and θ′ = 1

2
+

√
3
6

for the HV scheme.
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Figure 4.3: Illustration of the Douglas-Rachford
ADI scheme applied to the Heston model.

18This extends the accuracy up to 15dp.

57



Chapter 4: Finite Difference Schemes

0
50

100
150

200

0
0.2

0.4
0.6

0.8
1
0

50

100

S
V

O
p
ti
on

p
ri
ce

Heston solution via CS ADI, t=1

Figure 4.4: Illustration of the Craig-Sneyd ADI
scheme applied to the Heston model.
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Figure 4.5: Illustration of the Modified Craig-
Sneyd ADI scheme applied to the Heston model.
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Figure 4.6: Illustration of the Hundsdorfer-Verwer
ADI scheme applied to the Heston model.

4.9 ADI Implementation

We describe the procedure for implementing the Douglas-Rachford scheme. The
other schemes are similar but with added predictor and corrector steps. In the Mat-
lab computational implementation we maintain common functions for all schemes
for construction of the matrices A0, A1 and A2 and matrix inversions. We start by
constructing the sub-matrices of the matrix A. Recall equations (4.53a)-(4.53c).
The matrix A0 is the first to be constructed, this is easy as this matrix is only dealt
with explicitly.

The first step of the method consists of solving the first equation in the system
(4.59). If we substitute (4.53b) into the LHS of that first equation we obtain the
following

U∗
i,j − θ′∆t(

1

2
νjS

2
i

∆t

∆S2

(
U∗
i+1,j − 2U∗

i,j + U∗
i−1,j

)
+

1

2
rSi

∆t

∆S

(
U∗
i+1,j − U∗

i−1,j

)
− 1

2
r∆tU∗

i,j)

= (1 + ∆tA0 + (1− θ)∆tA1 +∆tA2)U
n
i,j,

(4.64)
and regrouping common terms on the LHS we obtain the coefficients

ai,j = − 1

2
θ′νjS

2
i

∆t

∆S2
+

1

2
θ′rSi

∆t

∆S
(4.65a)

bi,j = 1 + θ′νjS
2
i

∆t

∆S2
+

1

2
θ′r∆t (4.65b)

ci,j = − 1

2
θ′νjS

2
i

∆t

∆S2
− 1

2
θ′rSi

∆t

∆S
, (4.65c)

such that

ai,jU
∗
i−1,j + bi,jU

∗
i,j + ci,jU

∗
i+1,j = (1 + ∆tA0 + (1− θ)∆tA1 +∆tA2)U

n
i,j. (4.66)
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Fix j. Then the first step in the DR scheme (4.59) can be expressed as the system

L1,jU
∗
j = qj, j = 1, ..., NV − 1, (4.67)

where

L1,j =



b1,j c1,j 0 . . . . . . 0

a2,j b2,j c2,j

0
. . . . . . . . .

. . . . . . . . .

aNS−2,j bNS−2,j cNS−2,j

0 . . . . . . 0 aNS−1,j bNS−1,j


, U∗

j =



U∗
1,j

U∗
2,j

...

...

U∗
NS−2,j

U∗
NS−1,j


,

qj =



(1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n
1,j − a1,jU

∗
0,j

(1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n
2,j

...

...

(1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n
NS−2,j

(1 + ∆tA0 + (1− θ′)∆tA1 +∆tA2)U
n
NS−1,j − cNs,jU

∗
NS ,j


Note that U∗

0,j is known as this is the boundary condition at S = 0. Similarly.
the term U∗

NS ,j
is also known as this is the boundary condition at S = Smax. We

move these terms onto the right hand side so that the matrix L1,j is tridiagonal,
thus presenting us with a tridiagonal matrix inversion for which there are ample
algorithms to solve such problems.

Similarly, substituting the matrix A2 into the LHS of the second step we have

Un+1
i,j −θ′∆t

(
1

2
σ2νj

∆t

∆ν2
(
Un+1
i,j+1 − 2Un+1

i,j + Un+1
i,j−1

)
+

1

2

∆t

∆ν
κ(θ − νj)(U

n+1
i,j+1 − Un+1

i,j−1)

−1

2
r∆tUn+1

i,j

)
= U∗

i,j − θ′∆tA2U
n
i,j,

(4.68)
where U∗

i,j is the matrix resulting from the inversion in step one. The coefficients
this time are given by

a′i,j = − 1

2
θ′σ2νj

∆t

∆ν2
+

1

2
θ′κ(θ − νj)

∆t

∆ν
(4.69a)

b′i,j = 1 + θ′σ2νj
∆t

∆ν2
+

1

2
θ′r∆t (4.69b)

c′i,j = − 1

2
θ′σ2νj

∆t

∆ν2
− 1

2
θ′κ(θ − νj)

∆t

∆ν
, (4.69c)

such that
a′i,jU

n+1
i,j−1 + b′i,jU

n+1
i,j + c′i,jU

n+1
i,j+1 = U∗

i,j − θ′∆tUn
i,j. (4.70)
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Fix i. Then the second step of the DR scheme may be expressed as the system

L2,iU
n+1
i = qi, i = 1, ..., NS − 1, (4.71)

where

L2,i =



b′i,1 c′1,1 0 . . . . . . 0

a′i,2 b′i,2 c′i,2

0
. . . . . . . . .

. . . . . . . . .

a′i,NV −2 b′i,NV −2 c′i,NV −2

0 . . . . . . 0 a′i,NV −1 b′i,NV −1


, Un+1

i =



Un+1
i,1

Un+1
i,2

...

...

Un+1
i,NV −2

Un+1
i,NV −1


,

qi =



U∗
i,1 − θ′∆tUn

i,1 − a′i,1U
n+1
i,0

U∗
i,2 − θ′∆tUn

i,2

...

...

U∗
i,NV −2 − θ′∆tUn

i,NV −2

U∗
i,NV −1 − θ′∆tUn

i,NV −1 − c′i,NV
Un+1
i,NV


As before, we have moved the known terms Un+1

i,0 (boundary condition at ν = 0)

and Un+1
i,NV

(boundary condition at ν = νmax) to the right hand side and again
we have a tridiagonal matrix inversion problem. We use the tridiagonal matrix
algorithm (also known as the Thomas algorithm) to solve each matrix inversion
problem. If the coefficients were constant the matrices could be LU -factorized to
simplify the algorithm. An outline of the Thomas algorithm is given in Appendix
A. In the Matlab implementation we multiply by ∆t within the subprogram for
the construction of each matrix for simplicity.

4.10 The Greeks

The aim of this section is to introduce the different option price sensitivities, known
as the Greeks. The Greeks are a measure of the option price changes with a change
in one of the input parameters, ceteris paribus. They are extremely important in
financial risk management as they are hedging tools. In practice, we are interested
in how an option price changes with a change in a market parameter such as implied
volatility or interest rate. The Greeks are essentially partial derivatives and we can
therefore compute them via the finite difference methods developed in this chapter.
Table 4.1 shows the different Greeks and their respective meaning.

In this dissertation, we apply the different finite difference schemes to ∆, Γ and
vega. Note that all the greeks in Table 4.1 are first order derivatives except for
Γ = ∂2U

∂S2 , which does not measure a change in option price but instead a change
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Greek Derivative Measures change in

Delta ∆ = ∂U
∂S

the option price when underlying price increases by 1 unit
Gamma Γ = ∂∆

∂S
delta when underlying price increases by 1 unit

Vega ∂U
∂σ

the option price when volatility increases by 1%
Theta Θ = ∂U

∂t
the option price when time to expiry decreases by 1 day

Rho ρ = ∂U
∂r

the option price when interest rate increases by 1%
Psi Ψ = ∂U

∂q
the option price when dividend yield increases by 1%

Table 4.1: Table of option price sensitivities.

in ∆. Out of all the greeks, Θ is the only one in the negative domain as it is a
measure of decreasing time.

Delta Delta is defined as the change in the price of the derivative with repect to
a change in the underlying asset. The delta of a portfolio of derivatives on the
same underlying asset S is the sum of the deltas of the individual options. If a
portfolio has a delta of zero then it is said to be delta-neutral. In this case, since
the portfolio is not exposed to small changes in the option price, it is usually used
for hedging purposes. For example, one may construct a delta-neutral portfolio
by taking a long position in a call option and a short position in ∆ amount of
the underlying stock. This is called a ∆-hedge and is, for example, the argument
composed originally by Black and Scholes to derive the Black-Scholes equation.
Since delta tells us how much stock to hold in order to hedge our exposure to risk,
it is regarded as one of the most important greeks.

As an example, the central difference used to evaluate delta computationally is as
follows

∆ :=
∂Un

i,j

∂S
=

Un
i+1,j − Un

i−1,j

2∆S
. (4.72)

Gamma In practice, its common to refer to the gamma of a portfolio, which is the
rate of change of the portfolio’s delta with respect to a change in the underlying
asset. So we can write gamma as the derivative of delta as in Table 4.1 or we
can write it directly as the second derivative of the portfolio Π with respect to the
asset S as ∂2Π

∂S2 . Gamma is a measure of how sensitive delta is to a change in the
underlying asset. This means that for a large gamma, our delta-neutral portfolio
will need to be re-balanced more often as delta is more sensitive to small changes
in the underlying. Therefore, gamma is a measure of the degree of risk exposure
that a hedged position will have if the current hedge is not adjusted. If gamma
is small, then delta is relatively insensitive to option price changes in which case
re-balancing will be an infrequent task. So, in effect, gamma tells us how often and
how much we need to adjust the delta of a portfolio of derivatives to ensure risk
exposure to underling asset price changes is hedged. For large movements in the
underlying asset price, delta is not an accurate measure of how the option price
changes. This is because of the curvature that is left after delta hedging has been
done. The delta hedge is used to eliminate exposure to linear risk and gamma is
used to measure the remaining risk.
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Figure 4.7: Curvature risk left after linear risk is
hedged.

Figure 4.719 acts as an example of this remaining exposure. As the stock price
moves from S to S ′, delta hedging assumes the price of the derivative moves from
C to C ′, but actually the move is from C to C ′′. This difference between C and C ′′

will lead to an error in the hedge. The actual size of this error will be determined
by the degree of curvature and this degree is measured by gamma.

Gamma can also be used to find information regarding transaction costs. If there
are transaction costs, then by holding delta, a change in delta could mean for
example purchase of more stock is required and since gamma is the change in delta,
it will indicate how much to buy or sell and consequently the size of transaction
costs if present.

Theta The theta of a portfolio of derivatives measures the rate of change of the
portfolio’s value with respect to time. As mentioned previously, theta tends to
be in the negative domain. This is because as time to maturity approaches zero
the option loses value. As a matter of fact, theta is in the positive domain only
for European puts deep in the money. This is because a put can be worth less
than its intrinsic value but must eventually increase to match its intrinsic value at
expiration.

Vega The vega of a portfolio of derivatives is the rate of change of the portfolio’s
value with respect to the volatility of the underlying asset. Vega is of course not
a greek letter, so in literature it is sometimes referred to by the greek letters ν, λ
or κ. A derivative with a large vega is very sensitive to small changes in volatility.
Vega is typically positive, an observation that coincides with the intuition that a
rise in volatility will increase the value of an option.

There is a further approach to solving the Heston model developed by Shaw [42].
The outline of this approach is given in Appendix A, the details are omitted but
these are very similar to those in the derivation of the closed form solution as in
the original paper by Heston (1993) [24]. The advantage to the approach by Shaw
is the computational simplicity of the greeks. For this reason, which is further
explained in Appendix A, we consider this approach to evaluate the closed form
version of the greeks. The Matlab code used to produce the results is based on

19The source of this image is Hull (2012) [25].
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the graduate project by Lin [32]. Following are the plots of ∆, Γ and Vega as per
Shaw’s approach.

Next we present grids for the Greek sensitivities as evaluated via Shaw’s solution
[42]. The Greeks evaluated via ADI schemes are very similar (found in the Matlab
implementation separately). Below we outline the parameter values used to produce
the plots pictured after.

κ θ σ ρ r S V T K NS NV NT

2 0.2 0.3 0.8 0.03 200 1 1 100 40 20 4000

Table 4.2: Table with parameter values.
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Following are plots of the difference between the analytical and finite difference
approximations to each greek ∆, Γ and Vega.
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Figure 4.11: Difference between analytical and fi-
nite difference approximations to ∆ in the Heston
model.
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Figure 4.12: Difference between analytical and fi-
nite difference approximations to Γ in the Heston
model.
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Figure 4.13: Difference between analytical and fi-
nite difference approximations to Vega in the He-
ston model.

4.11 Finite Differences in the Non-Uniform Case

In the non-uniform case the increments in spatial variables are not equidistant. To
derive the finite difference scheme we proceed in a similar manner to the approach
taken in the uniform case. This time, we leave out the details and present the
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backward, central and forward difference schemes directly. These are outlined
below for a general spatial variable x.

Backward
f ′(xi) ≈ αi,−2f(xi−2) + αi,−1f(xi−1) + αi,0f(xi) (4.73)

Central
f ′(xi) ≈ βi,−1f(xi−1) + βi,0f(xi) + βi,1f(xi+1) (4.74)

Forward
f ′(xi) ≈ γi,0f(xi) + γi,1f(xi+1) + γi,2f(xi+2) (4.75)

where the coefficients are given by

αi,−2 =
∆xi

∆xi−1(∆xi−1 +∆xi)
, αi,−1 =

−∆xi−1 −∆xi
∆xi−1∆xi

, αi,0 =
∆xi−1 + 2∆xi

∆xi(∆xi−1 +∆xi)

βi,−1 =
−∆xi+1

∆xi(∆xi +∆xi+1)
, βi,0 =

∆xi+1 −∆xi
∆xi∆xi+1

, βi,1 =
∆xi

∆xi+1(∆xi +∆xi+1)

γi,0 =
−2∆xi+1 −∆xi+2

∆xi+1(∆xi+1 +∆xi+2)
, γi,1 =

∆xi+1 +∆xi+2

∆xi+1∆xi+2

, γi,2 =
−∆xi+1

∆xi+2(∆xi+1 +∆xi+2)

The second order derivative may be approximated by

f ′′(xi) ≈ δi,−1f(xi−1) + δi,0f(xi) + δi,1f(xi+1), (4.76)

where the coefficients are given by

δi,−1 =
2

∆xi(∆xi +∆xi+1)
, δi,0 =

−2

∆xi∆xi+1

, δi,1 =
2

∆xi+1(∆xi +∆xi+1)
.

The mixed derivative term in the Heston PDE is approximated using the following
central scheme (composed of nine summands)

∂2f

∂x∂y
(xi, yj) ≈

1∑
k,l=−1

βi,kβ̂j,lf(xi+k, yj+l)

= βi,0β̂j,0f(xi, yj) + βi,−1β̂j,0f(xi−1, yj) + βi,+1β̂j,0f(xi+1, yj)

+ βi,0β̂j,−1f(xi, yj−1) + βi,0β̂j,+1f(xi, yj+1) + βi,−1β̂j,−1f(xi−1, yj−1)

+ βi,−1β̂j,+1f(xi−1, yj+1) + βi,+1β̂j,−1f(xi+1, yj−1) + βi,+1β̂j,+1f(xi+1, yj+1),
(4.77)

where β̂j,k is the coefficient that is analogous to βi,k but in the y-direction (when
applied to our problem this will be the variance direction) rather than x-direction.

The FD formulas (4.74), (4.76) and (4.77) represent central schemes whereas for-
mulas (4.73) and (4.75) are upwind schemes. Upwind schemes are one-sided dis-
cretizations which may be used on boundaries or for instance, to correct instabilities
that sometimes arise as a result of central schemes.
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HH
HHHHj

i
-1 0 1

-1 −∆Si+1

∆Si(∆Si+∆Si+1)

−∆νj+1

∆νj(∆νj+∆νj+1)
−∆Si+∆Si+1

∆Si∆Si+1

−∆νj+1

∆νj(∆νj+∆νj+1)
∆Si

∆Si+1(∆Si+∆Si+1)

−∆νj+1

∆νj(∆νj+∆νj+1)

0 −∆Si+1

∆Si(∆Si+∆Si+1)

−∆νj+∆νj+1

∆νj∆νj+1

−∆Si+∆Si+1

∆Si∆Si+1

−∆νj+1

∆νj(∆νj+∆νj+1)
∆Si

∆Si+1(∆Si+∆Si+1)

−∆νj+1

∆νj(∆νj+∆νj+1)

1 −∆Si+1

∆Si(∆Si+∆Si+1)

∆νj
∆νj+1(∆νj+∆νj+1)

−∆Si+∆Si+1

∆Si∆Si+1

∆νj
∆νj+1(∆νj+∆νj+1)

∆Si

∆Si+1(∆Si+∆Si+1)

∆νj
∆νj+1(∆νj+∆νj+1)

Table 4.3: Table of central derivatives for mixed spatial derivatives term.
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NV = 20 and NT = 4000.
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Analysis

5.1 Error Analysis

5.1.1 Convergence, Consistency and Stability

The purpose of this section is to familiarize the reader with some important con-
cepts encountered when dealing with finite difference schemes. With this in mind,
the following definitions serve as a base from which stems our analysis.

Denote as before the approximation to the Heston problem at a grid point (Si, νj, tn)
by Un

i,j and let u(Si, νj, tn) denote the exact solution
1. In order to keep the problem

as simple as possible define an operator L as follows

L =
1

2
νS2 ∂

2

∂S2
+

1

2
σ2ν

∂2

∂ν2
+ ρσνS

∂2

∂S∂ν
+ rS

∂

∂S
+ κ(θ − ν)

∂

∂ν
− r, (5.1)

such that our Heston PDE can be written

∂U

∂t
= LU. (5.2)

If we define the following approximation operator

D∆S∆νU
n
i,j :=

1

2
νS2

δ2SU
n
i,j

∆S2
+
1

2
σ2ν

δ2νU
n
i,j

∆ν2
+ρσνS

δ2SνU
n
i,j

4∆S∆ν
+rS

δSU
n
i,j

2∆S
+κ(θ−ν)

δνU
n
i,j

2∆ν
−rUn

i,j,

(5.3)
we obtain the corresponding finite difference scheme

∆+tU
n
i,j

∆t
= D∆S∆νU

n
i,j, (5.4)

or in concise matrix notation

LUn+1 = QUn, n ∈ [0, NT − 1] (5.5)

1Note that this is the only time we highlight this difference and in previous sections we use
the two interchangeably.
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where the matrices L and Q are of size (NS − 1)(NV − 1)× (NS − 1)(NV − 1) and
Uq with q = n, n + 1 are vectors of size (NS − 1)(NV − 1) with arrangement as
follows (see Rouah [40]):(

U q
1,1, ..., U

q
1,NV −1, ..., U

q
NS ,1

, ..., U q
NS−1,NV −1

)T
. (5.6)

We are now ready to introduce some important notions.

Definition 5.1.1 (Truncation error). The truncation error is defined as the differ-
ence between the exact differential equation and its finite difference representation.
In mathematical terms the truncation error is

τ(S, ν, t) :=
∆+tu(S, ν, t)

∆t
− Lu(S, ν, t), (5.7)

where u denotes the exact solution. If the truncation error is given at a point in
time and space then it is called a local truncation error. �

Definition 5.1.2 (Convergence). A numerical scheme is convergent if at a grid
node (Si, νj, tn) the numerical solution tends to the exact solution as the mesh
length tends to zero. Equivalently, if any grid point (S, ν, t) × (Smin, Smax) ×
(νmin, νmax)× (0, T ] with Si → S, νj → ν, tn → t⇒ Un

i,j → U(Si, νj, tn). �

Definition 5.1.3 (Consistency). A numerical scheme is consistent if it converges
to the solution of the PDE that is being discretized. This means that as the
increments in time and space tend to zero, the truncation error tends to zero also.
Therefore, the finite difference scheme (5.4) is consistent with the PDE (4.2) if the
following relationship holds(

∂

∂t
− L

)
U(Si, νj, tn)−

[
∆+tU

n
i,j

∆t
−D∆S∆νU

n
i,j

]
→ 0 as ∆S, ∆ν, ∆t→ 0. (5.8)

The numerical scheme is inconsistent if the numerical solution converges to the
solution of a different partial differential equation. �

Definition 5.1.4 (Stability). The difference scheme (5.4) is said to be stable with
respect to the norm ‖·‖ if there exist positive constants ∆S0, ∆ν0 and ∆t0 and two
non-negative constants K and β such that∥∥Un+1

∥∥ ≤ Keβt ‖Un‖ (5.9)

for 0 < ∆S < ∆S0, 0 < ∆ν < ∆ν0, 0 < ∆t < ∆t0. �

Definition 5.1.5 (Oder of accuracy). A difference scheme is said to be accurate
up to order (p, q, r) in ∆S, ∆ν and ∆t respectively, with respect to the PDE of
interest if for some constant C

τ(S, ν, t) ≤ C(∆Sp +∆νq +∆tr) (5.10)

as ∆S, ∆ν, and ∆t tend to zero. �
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Definition 5.1.6 (Von-Neumann Stability). Let ā be the amplification factor as-
sociated with the difference scheme of interest. The scheme is Von-Neumann stable
if there exist positive constants ∆S0, ∆ν0 and ∆t0 such that

|ā|≤ 1 + C∆t (5.11)

for 0 < ∆S < ∆S0, 0 < ∆ν < ∆ν0 and 0 < ∆t < ∆t0. If the amplification factor
ā is independent of ∆S, ∆ν and ∆t, the stability condition can be replaced with
the restricted stability condition

|ā|≤ 1. (5.12)

�

Proving convergence directly from its definition can be quite difficult, in general.
Instead, it may be easier to use the Lax equivalence theorem, which connects the
definitions of convergence, consistency and stability. It asserts that as long as the
scheme is consistent, then convergence is synonymous with stability. We give a
definition and then the formal statement of the theorem.

Definition 5.1.7 (Well-posedness). A problem is well-posed if

1. it has a solution

2. the solution is unique2

3. the solution depends continuously on the initial and boundary conditions3.

�

Theorem 1 (Lax equivalence theorem). A consistent difference scheme for a well-
posed linear initial value problem is convergent if and only if it is stable. �

A formal proof of this theorem is beyond the scope of this dissertation, but can be
found in Richtmyer and Morton (1994) [39]. As mentioned, the theorem is very
useful as we need only show consistency and stability to obtain convergence.

5.2 The Explicit Scheme

5.2.1 Truncation Error and its Consistency Implications

In this section we derive an expression for the truncation error in the explicit
scheme. The work hereon for stability considerations in the Explicit FD scheme

2It could be the case that sometimes a solution is “unique within a certain class of functions”.
For example, a problem may have many solutions and only one of them is bounded. Then the
solution is unique within the space of bounded functions.

3A solution depends continuously on the initial and boundary conditions if small changes in
the initial or boundary conditions and in parameter values result in small changes in the solution
(with respect to the appropriate norm).
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follows closely the work by Mitchell and Griffiths [35] and Engan [18].

τ(S, ν, t) :=
∆+tu(S, ν, t)

∆t
− Lu(S, ν, t)

=
∆+tu(S, ν, t)

∆t
− 1

2
νS2 δ

2
Su(S, ν, t)

∆S2
+

1

2
σ2ν

δ2νu(S, ν, t)

∆ν2

+ ρσνS
δ2Sνu(S, ν, t)

4∆S∆ν
+ rS

δSu(S, ν, t)

2∆S
+ κ(θ − ν)

δνu(S, ν, t)

2∆ν
− ru(S, ν, t).

(5.13)
Using our earlier Taylor series expansions we have

τ =
ut∆t+

1
2
utt∆t

2 + 1
6
uttt∆t

3 +O(∆t4)

∆t
− 1

2

[
uSS∆S

2 + 1
12
uSSSS∆S

4 +O(∆S6)

∆S2

]
+ ρσνS

[
4uSν∆S∆ν +O((∆S∆ν)2)

4∆S∆ν

]
+

1

2
σ2ν

[
uνν∆ν

2 + 1
12
uνννν∆ν

4 +O(∆ν6)

∆ν2

]
+ κ(θ − ν)

[
uν∆ν +

1
6
uννν∆ν

3 +O(∆ν5)

∆ν

]
+ rS

[
uS∆S + 1

6
uSSS∆S

3 +O(∆S5)

∆S

]
.

(5.14)
However, since u is the exact solution, it identically satisfies the original PDE at
all grid nodes (Si, νj, tn), thus

∂u

∂t
− Lu = 0. (5.15)

Substituting (5.15) into (5.14) gives the truncation error

τ(S, ν, t) = τni,j = O(∆S2 +∆ν2 +∆t). (5.16)

Thus the classical explicit solution to the Heston PDE is O(∆t) accurate in time
and O(∆S2) and O(∆ν2) accurate in space. This means that the explicit Euler
scheme is first-order accurate in time and second-order accurate in space. Moreover,
since τ(S, ν, t) → 0 as ∆S, ∆ν, ∆t→ 0 the explicit Euler scheme is also consistent.

5.2.2 Convergence

The error of the explicit scheme at the grid node (Si, νj, tn) is given by

eni,j = Un
i,j − u(Si, νj, tn), (5.17)

where as usual, Un
i,j denotes the approximation to the exact solution u(Si, νj, tn).

Since Un
i,j is the solution to the difference equation it has no truncation error,

however uni,j leaves the residual truncation error τni,j. So if we apply the truncation
formula to the error we have

τeni,j = − τ(Si, νj, tn)

=
∆+te

n
i,j

∆t
− Leni,j

(5.18)
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⇒

en+1
i,j = eni,j

(
1− r∆t− ∆t

∆S2
νjS

2
i −

∆t

∆ν2
σ2νj

)
−∆tτni,j

+ eni−1,j

(
∆t

2∆S2
νjS

2
i −

∆t

2∆S
rSi

)
+ eni+1,j

(
∆t

2∆S2
νjS

2
i +

∆t

2∆S
rSi

)
+ eni,j−1

(
∆t

2∆ν2
σ2νj − κ(θ − νj)

∆t

2∆ν

)
+ eni,j+1

(
∆t

2∆ν2
σ2νj + κ(θ − νj)

∆t

2∆ν

)
+ ρσνjSi

∆t

4∆S∆ν

(
eni+1,j+1 + eni−1,j−1 + eni−1,j+1 + eni+1,j−1

)
.

(5.19)
So that the coefficients preceding the error terms are non-negative we need to
impose the following conditions

∆t
2∆S

|rSi|
∆t

2∆S2 (νjS2
i )

≤ 1,
∆t
2∆ν

|κ(θ − νj)|
∆t

2∆ν2
(σ2νj)

≤ 1, r∆t+
∆t

∆S2
νjS

2
i +

∆t

∆ν2
σ2νj ≤ 1

for i = 0, 1, ..., NS, j = 0, 1, ..., NV . We must also have

ρσνjSi ≥ 0 ⇔ ρ > 0, σ > 0 or ρ < 0, σ < 0

where we note that the asset price Si and variance νj must be positive processes.
Note that

|en+1
i,j |≤ (1 + r)max

{
|eni−1,j|, |eni+1,j|, |eni,j−1|, |eni,j+1|, |eni,j|, |eni+1,j−1|, |eni−1,j+1|, |eni−1,j+1|,
|eni+1,j+1|, |eni−1,j−1|

}
+∆tM(∆t+∆S2 +∆ν2),

(5.20)
and define

En = max
0≤i≤NS ,0≤j≤NV

|eni,j|, (5.21)

such that
En+1 ≤ En(1 + r∆t) + L(∆t+∆S2 +∆ν2). (5.22)

By induction

En ≤ E0(1 + r∆t)n +∆tL(∆t+∆S2 +∆ν2)
n−1∑
k=0

(1 + r∆t)k

=
∆tL(∆t+∆S2 +∆ν2)((1 + r∆t)n − 1)

r∆t
≤ ern∆tL̃(∆t+∆S2 +∆ν2)

(5.23)

⇒ convergence.

5.2.3 Von-Neumann Stability

There are different ways of determining the stability of a scheme4. A common
approach to determining any stability conditions on a scheme is the Von-Neumann

4Further techniques with examples can be found in Duffy (2006) [15].

73



Chapter 5: Analysis

stability approach. Strictly speaking, this technique is only valid for linear ini-
tial value problems with constant coefficients and periodic boundary conditions.
Regardless, it is often applied in the literature to general problems as a neces-
sary stability condition. When dealing with non-constant coefficients, stability is
dealt with as a local condition, where we freeze the coefficients and determine the
stability at a given grid point.

Bearing this in mind, suppress the indices from the spatial variables and let i =√
−1 be the imaginary unit and p,q be the spatial indices. Write

Un
p,q = ānei(pkS∆S+qkν∆ν), (5.24)

and use this representation in the finite difference PDE (5.4) to obtain

ā =

(
1− ∆t

∆S2
S2ν − ∆t

∆ν2
σ2ν − r∆t

)
+

(
1

2

∆t

∆S2
S2ν − 1

2

∆t

∆S
rS

)
e−ikS∆S +

(
1

2

∆t

∆S2
S2ν +

1

2

∆t

∆S
rS

)
eikS∆S

+

(
1

2

∆t

∆ν2
σ2ν − 1

2

∆t

∆ν
κ(θ − ν)

)
e−ikν∆ν +

(
1

2

∆t

∆ν2
σ2ν +

1

2

∆t

∆ν
κ(θ − ν)

)
eikν∆ν

+
1

4

∆t

∆S∆ν
ρσSν

[
eikS∆S+ikν∆ν + e−ikS∆S−ikν∆ν − e−ikS∆S+ikν∆ν − eikS∆S−ikν∆ν

]
(5.25)

m

ā− 1 =
1

2

∆t

∆S2
S2ν

[
e−ikS∆S − 2 + eiks∆S

]
+

1

2

∆t

∆ν2
σ2ν

[
e−ikν∆ν − 2 + eikν∆ν

]
+

1

2

∆t

∆S
rS
[
eikS∆S − e−ikS∆S

]
+

1

2

∆t

∆ν
κ(θ − ν)

[
eikν∆ν − e−ikν∆ν

]
+

1

4

∆t

∆S∆ν
ρσSν

[
eikS∆S+ikν∆ν + e−ikS∆S−ikν∆ν − e−ikS∆S+ikν∆ν − eikS∆S−ikν∆ν

]
− r∆t.

(5.26)
Recall the following identities which allows us to express the sine and cosine func-
tions in terms of the exponential

sin(x) =
eix − e−ix

2i
, cos(x) =

eix + e−ix

2
. (5.27)

Also recall the double angle formula

cos(2x) = 1− 2 sin2(x). (5.28)

So we have
eikS∆S + e−ikS∆S = 2i sin(kS∆S), (5.29)

and
eikS∆S + e−ikS∆S

2
= 1− 2 sin2

(
1

2
kS∆S

)
(5.30)

⇒
eikS∆S + e−ikS∆S − 2 = −4 sin2

(
1

2
kS∆S

)
. (5.31)
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Similarly, we can express the mixed derivative term as follows

eikS∆S(eikν∆ν − e−ikν∆ν − e−ikS∆S(eikν∆ν − e−ikν∆ν)

= 2ieikS∆S sin(kν∆ν)− 2ie−ikS∆S sin kν∆ν

= 4i2 sin(kν∆ν) sin(kS∆S)

= − 4 sin(kν∆ν) sin(kS∆S)

(5.32)

⇒

ā = 1− r∆t− 4

[
1

2

∆t

∆S2
S2ν sin2

(
1

2
kS∆S

)
+

1

2

∆t

∆ν2
σ2ν sin2

(
1

2
kν∆ν

)]
+ i

[
∆t

∆S
rS sin(kS∆S) +

∆t

∆ν
κ(θ − ν) sin(kν∆ν)

]
− ∆t

∆S∆ν
ρσSν sin(kν∆ν) sin(kS∆S).

(5.33)
The Von-Neumann condition for stability is

G = |ā|≤ 1,

where we recall that G is the amplification factor.

We therefore see that the explicit scheme is conditionally stable.

5.2.4 Non-rigorous Stability Derivation

This section follows closely the work on stability analysis for the Explicit FD scheme
done by Lin [32]. The first step is to observe that the following relationship holds,
as long as r > 0,

An
i,j +Bn

i,j + Cn
i,j +Dn

i,j + En
i,j < 1 (5.34)

as it implies that
1− r∆t < 1 (5.35)

where ∆t, r > 0. In order to maintain the above relationship we should ascertain
that each individual bracketed term is positive. We thus first obtain

1−∆t(i2j∆ν +
σ2j

∆ν
+ r) ≥ 0

⇒∆t ≤ 1

i2j∆ν + σ2j
∆ν

+ r

(5.36)

and noting that V = NV∆ν ⇒ NV

V
= 1

∆ν
5 we can write

∆t ≤ 1

i2j∆ν +
N2

V σ2j∆ν

V 2 + r
. (5.37)

Similarly,

i ≥ r

j∆ν
(5.38)

5Note here that V = Vmax.
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j ≥ κ(θ − j∆ν)

σ2
(5.39)

It’s equivalent to write equation (5.37) as

∆t ≤ 1

N2
SV +

N2
V σ2

V
+ r

. (5.40)
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5.3 Numerical Experiments

This section presents a series of numerical experiments carried out to test properties
of the ADI methods previously introduced. Thus far, in any illustration given
we have been working with a single set of parameters as given in Table 4.2. In
this section we extend the analysis to investigate different parameter scenarios, so
that we can make comparisons and draw conclusions on the effect of changing a
particular parameter value. In Table 5.1, we present our original parameter set
(case 1) and four further sets which are taken from In’T Hout and Foulon [27].
Note that case 3 is important as σ is close to zero which implies that the Heston
PDE is dominated by the convection term in the ν-direction. Furthermore, case 4
is important as here the Feller condition 2κθ′ ≥ σ2 is only just met.

Case 1 Case 2 Case 3 Case 4 Case 5

κ 2 1.5 3 0.6067 2.5
θ 0.2 0.04 0.12 0.0707 0.06
σ 0.3 0.3 0.04 0.2928 0.5
ρ 0.8 -0.9 0.6 -0.7571 -0.1
r 0.03 0.025 0.01 0.03 0.0507
T 1 1 1 3 0.25
K 100 100 100 100 100

Table 5.1: Sets of parameter values for the Heston model used to price a European
call option.

5.3.1 The Explicit Scheme

This section pays brief attention to condition (5.40) on ∆t. The parameters used
are those in case 1 with NS = 40, NV = 20 and NT = 4000. In this case ∆t =
T
NT

= 1
4000

= 0.00025, and looking at inequality (5.40), the requirement for stability

is ∆t ≤ 1
402+2020.32+0.03

= 1
1636.03

≈ 0.00061124. Thus in this case the requirement
is met.

Figure 5.1a is a plot of the error surface in the explicit FD scheme. It is calculated
as the difference between the exact solution and its finite difference approximation.
In turn, Figure 5.1b is a plot of the absolute of this error quantity. It is evident
from both plots that the error increases towards the maximum values of asset price
and volatility. Note that by setting V = 1 the stability condition (5.40) breaks
down to ∆t ≤ 1

N2
S+σ2N2

V
, in which case increasing the number of asset steps NS

and volatility steps NV will require an increase in the number of time steps NT

to maintain stability. For example, if we increase the number of asset steps to
NS = 60 and the number of volatility steps NV = 30 then we need for instance
NT = 6000 to ensure condition (5.40) is satisfied6.

6The derivation of the stability condition on ∆t is non-rigorous and as such we may find the
scheme is unstable if the condition is only just met for example.
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Figure 5.1: Explicit FD scheme error and absolute error.

Figure 5.2 is a plot of the number of time steps against the error in the Explicit
FD scheme. It can be seen that as the number of time steps is increased (i.e. ∆t is
decreased), the error decreases, as expected. If we were to plot the error for a ∆t
value violating the condition (5.40) then the error would grow without bound and
we would expect to see the error for such ∆t suddenly shoot off.
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Figure 5.2: Plot of the error vs. the number of
time steps in the Explicit FD scheme.
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ADI Methods

To examine global convergence of a particular scheme, we must observe changes in
the error across all mesh nodes as the number of grid points is increased. Due to the
availability of a closed form solution of the Heston PDE for European options, the
error can be easily defined as the difference between the exact solution u(Si, νj, tn)
and numerical approximation Un

i,j at a given grid point. This is only valid for a
uniform mesh however, as in the non-uniform case it is not possible to monitor a
single node as its position changes non-linearly. Instead, using the infinity norm
one is able to capture the largest error across the entire mesh. Formally, we define
the maximum absolute error (also termed global discretization error in [27]) which
is valid for both uniform and non-uniform mesh discretizations as follows7

eni,j := ||u(Si, νj, tn)− Un
i,j||∞= max

0≤i≤NS ,0≤j≤NV

|u(Si, νj, tn)− Un
i,j| (5.41)

We remark that in the case that the exact price of a derivative is not known (eg.
barrier options8), one must use alternative ways of evaluating the size of the error.
For instance, one may use Richardson extrapolation where the error in the option
value is obtained by subtracting an infinite grid result from the calculated present
option value (see Tavella and Randall [43]).

The first treatment presented is on ADI schemes possessing a uniform mesh. It is
expected that errors are higher and behave in a more erratic manner than in the
non-uniform case. Such conclusion may be attributed to the relative position of
the point S = K to the mesh in the S-direction (see further issues in Tavella and
Randall [43]). Begin by performing an experiment on the DR ADI scheme with
θ′ = 1

2
and all other parameters as in case 1. Recall that for this value of θ′ the

DR scheme is consistent and unconditionally stable thus by the Lax equivalence
theorem the scheme converges and the error should approach zero as the number
of grid-points is increased.

Figures 5.3a and 5.3b show the error and absolute error surfaces as functions of
both asset and volatility spatial variables, respectively. It can be seen that the error
is high around the critical point S = K. This is a quantization error and is a result
of discontinuities in the payoff function. To reduce this error one must ensure that
the present value of the option is dependent to a minimum on the location of the
strike relative to the mesh grid. Furthermore, the error seems to be larger at the
maximum grid-points Smax and νmax, as was the case in the explicit scheme. This is
likely to be related to the treatment of the boundary conditions, in particular those
at Smax and νmax. If we increase the number of grid points (currently NS = 40 and
NV = 20) we expect the error to decrease. Recall that since we are dealing with a
uniform grid, results around influential points, such as the strike K = 100 are not
emphasized and errors around these areas may be larger, as we see in Figure 5.3b.
The benefit of using a non-uniform grid is that we may concentrate the number
of grid points around critical regions of the domain Ω whilst keeping computation
time unchanged (as the total number of grid points remains the same). Note that
throughout we maintain the relationship NS = 2NV as, from an efficiency point of

7In the literature, often the error is observed over a subset of the region of interest in order
to minimize noise from the boundaries.

8For a brief description of barrier options see Appendix A.
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view, we are able to use less points in the ν-direction than in the S-direction, see
[27].
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Figure 5.3: DR scheme error taken first as the difference between the exact solution
and the approximation and then the absolute value of this difference. Here we take
∆t = 1

1000
.

Figure 5.4a is a plot of the maximum absolute error as a function of the number
of time steps where NS = 40 and NV = 20. As expected, it is clear that as the
number of time steps is increased, the error decreases. It is clear that the error
values remain within a reasonable bound and decrease monotonically with NT .
This favourable result indicates that the DR scheme converges as the number of
time steps is increased (i.e. as ∆t is decreased). This result is significant since the
unconditional stability of the DR scheme in the time direction does not follow from
Von Neumann stability analysis. Figure 5.4b shows that the DR scheme is approx.
1 with respect to time, i.e. O(∆t)9.

9Deducing the order of a particular method is described in further detail later on.
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Figure 5.4: DR scheme error plots.

Next we present the results from the plots above in table format. Table 5.2 shows
the relationship between the number of time steps and an improvement in the error.
The percentage improvement changes quickly after the first 300 time steps but then
seems to progress at a lower rate. It may be reasonable to select around 900 time
steps as an optimal choice, yet it remains a trade-off between computational time
and accuracy.

No. of grid points
in S-direction

Maximum absolute
error

% improvement
in error

100 0.198321195556034 Null
200 0.090374174644612 26.56%
300 0.071596160224036 9.44%
400 0.062509157872594 5.86%
500 0.057055346895524 4.07%
600 0.053418721771813 3.00%
700 0.050820736810159 2.30%
800 0.048872020517759 1.83%
900 0.047356212289699 1.48%
1000 0.046143474927018 1.23%

Table 5.2: Douglas scheme for varying values of NS with NV = NS

2
and ∆t = 1

1000

fixed.

Consider now the effect of varying the weighing parameter θ′ on the error across
different ADI schemes. We test the validity of (or consistency with) the condi-
tions for unconditional stability under each alternating-direction implicit method
as presented in [27]. Recall that the DR and CS schemes are unconditionally stable
whenever θ′ ≥ 1

2
, the MCS scheme is unconditionally stable whenever θ′ ≥ 1

3
and
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the HV scheme is unconditionally stable whenever θ′ ≥ 1
2
+

√
3
6
for a two-dimensional

convection-diffusion equation (as is the case with the Heston PDE) or θ′ ≥ 1−
√
2
2

for a two-dimensional pure diffusion equation.

Using the error definition (5.41), plot a series of graphs to observe the error under
each ADI schemed as ∆t varies, where we use the data in case 1. In Figures
5.5a-5.5d, the maximum value of ∆t tested is ∆t = 1

20
= 0.05 where NT = 20 is

the number of time steps and a uniform grid is used throughout. Note that the
parameters used are those in case 1, and the number of time steps varies from
NT = 20 to 4000.

The DR scheme is unstable for θ′ < 1
2
as evidenced by Figure 5.5a (any smaller

values of θ′ have led to an unstable error). Similarly, the CS scheme is stable in
the case that θ′ ≥ 1

2
. On the other hand, the MCS scheme is stable for θ′ ≥ 1

3
and

this can be seen from Figure 5.5c as the scheme is stable for θ′ = 0.4. With the HV
scheme, there are limited sources providing conclusions on unconditional stability in
the case of two-dimensional equation with a convection term (as is the case with the
Heston PDE). One conjecture mentioned in [27] is that the HV scheme is claimed
unconditionally stable when applied to two-dimensional convection-diffusion equa-
tion in presence of a mixed derivative term whenever θ′ ≥ 1

2
+

√
3
6
. It can be seen

from Figure 5.5d that in fact, in the case of the chosen parameters, the error con-
verges for θ′ = 1, 0.8, 0.6, and 0.4, rather than just for 1 and 0.8 as the conjecture
would suggest. This could be due to the parameter set used, as in the case where
θ′ < 1

2
+

√
3
6

there may be additional parameter constraints necessary for stability,
which happen to be met with this particular parameter set.
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Figure 5.5: Plots to show the maximum absolute error in different ADI schemes as
∆t is decreased. Note that wherever a value of theta′ leads to unstable unbounded
errors, these have not been plotted.

Next we compare accuracy of different ADI schemes. Table 5.3 shows the option
price at node (S, ν) = (70, 0.12) across different ADI schemes, where NT = 5000.
This node has been selected to give a minimum error as it is away from the critical
areas S = K and ν = 0. We have set θ′ = 1

2
in schemes DR, CS and MCS, and

θ′ = 1−
√
2
2

for the HV scheme. Note that when θ′ = 1
2
the CS and MCS schemes

are indistinguishable10. This is evidenced by equal option price values for both CS

10This can be easily verified by inserting θ′ = 1
2 into the MCS scheme steps.
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and MCS schemes. Note that when θ′ = 1
3
the MCS scheme performs better in the

sense of accuracy, however this difference can only be seen by observing more than
4 decimal places (use format long in Matlab to see up to 15 dp). Notice that
the HV scheme is not different (to 4dp) to the CS or MCS schemes. It performs
better as a result of damping methods, or could perform better if tested on other
areas of the grid. When θ′ was varied, there was not a large change between option
price values for the different schemes. This is because ∆t is very small. If we pay
attention to the section where θ′ was varied, we can see that for small ∆t, the error
is approx. constant across ADI schemes.

Mesh size
(NS ×NV )

ADI call option price Absolute error
DR CS MCS HV DR CS MCS HV

(21× 11) 4.5816 4.5832 4.5832 4.5832 0.0756 0.0740 0.0740 0.0740
(41× 21) 4.6350 4.6366 4.6366 4.6366 0.0222 0.0206 0.0206 0.0206
(61× 31) 4.6467 4.6483 4.6483 4.6483 0.0105 0.0089 0.0089 0.0089
(81× 41) 4.6508 4.6524 4.6524 4.6524 0.0064 0.0048 0.0048 0.0048
(101× 51) 4.6528 4.6544 4.6544 4.6544 0.0044 0.0028 0.0028 0.0028
(121× 61) 4.6534 4.6550 4.6550 4.6550 0.0038 0.0022 0.0022 0.0022

Table 5.3: ADI schemes applied with a uniform mesh, with the option price value
given at point (S, ν) = (70, 0.12).

We next study the order of accuracy with respect to spatial variables for different
ADI schemes applying parameter set in case 1. In order to establish the order of
accuracy with respect to the number of asset and volatility steps of a particular
scheme, the common approach is to impose the following relationships

ε ∼ ∆Sp

ε ∼ ∆νq
(5.42)

where ε denotes the error. Then by use of the laws of logarithms the following
relationships are obtained

log ε ∼ p log∆S

log ε ∼ q log∆ν
(5.43)

This implies that the gradient given by the plots of log ε vs. log∆S and log ε vs.
log∆ν will show the order of dependence p on ∆S and q on ∆ν, respectively. We
plot logarithms of the error e(2NV , NV ) against

1
NS

for NS = 10, 20, ..., 100. This
is done similarly to In’T Hout and Foulon [27]. This is shown in Figure 5.6a for
the DR scheme. The slope is approximately 2, which suggests that the order of the
Douglas-Rachford scheme with respect to the asset price is 2 (i.e. ε ∼ O(∆S2)).
Figure 5.6b is an equivalent plot for the HV scheme with θ = 1

2
+ 1

6

√
3. The order

of convergence with respect to the asset price is also approximately two again,
as expected. Remaining ADI schemes, CS and MCS, have order of convergence
approx. 2 also.
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Figure 5.6: Log of inverse number of time steps against log of the error for both
Douglas and HV schemes.

In addition to observing the behaviour of the global discretization error, it is of
interest to observe individual errors across the grid. In the literature, often the
region of interest is cut into a subset in order to avoid unnecessary noise from the
boundaries. For example, some papers confine the error to be contained within a
subset of the region of interest as follows

eni,j = max

{
|u(Si, νj, tn)− Un

i,j|:
1

2
K < Si <

3

2
K, νmin < νj < νmax

}
(5.44)

Figure 5.7 shows four plots representing the error surface in the MCS scheme with
θ′ = 1

3
11, using a uniform mesh, for different cases. Here, the full region of interest

is shown. Case 3 has been left out as the error in this case behaves in an unstable
manner; this is most likely due to the value of σ in this case, which lies close to zero.
In turn, this means that the problem is convection dominated in the ν-direction
and such domination is associated with oscillations and numerical errors. Case
1 seems to result in the best performance by the chosen method, MCS. In case
2 there are visible spurious oscillations around the critical region of νmin = 0,
with the larger oscillations appearing around the area of S = K where the payoff
discontinuity occurs. These oscillations may be a result of the strong negative
correlation between the asset price and its volatility, which also explains the growth
in the wave amplitude as the asset price grows. Case 4 shows brief oscillations
around the critical region of S = K. This may again be related to the negative
correlation between spatial variables. The large error at the maximum values of S
and ν may be due to the extended maturity in this case of 3 years. Finally, case 5 has
a short option life span, such that the aforementioned error is not apparent in this
case. Again, the small oscillations may be a result of a weak negative correlation

11In the paper by [27] the MCS scheme with θ′ = 1
3 used with damping at t = 0 is found to be

preferred over other schemes in terms of providing a fast, accurate and robust numerical solution
to the Heston PDE with an arbitrary correlation ρ ∈ [−1, 1].
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between spatial variables. Other ADI schemes behave similarly (depending on value
of θ′ chosen).
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Figure 5.7: Error in MCS scheme with NS = 40, NV = 20 and ∆t = 1
4000

.

The oscillatory behaviour perceived in the error surfaces may be remedied by ei-
ther applying damping procedures or an upwinding technique. One such damping
procedure involves initially replacing at t = 0 the time step ∆t by two backward
Euler time-steps of size ∆t

2
and continue after t = ∆t with the time-stepping scheme

currently used. This was originally proposed by Rannacher (1984) where the time-
stepping in the CN scheme should be preceded by a finite number of implicit steps.
The idea is that high frequency error terms are dampened by the implicit steps
resulting in a smooth convergence. In this method, it’s expected that the second
order time-stepping convergence is maintained as only a finite number of time-steps
are completed. The reduction in spurious oscillations also simplifies hedging of the
underlying. This technique is expensive in terms of computational cost when ap-
plied to the Heston model. It has been suggested in [38] that a similar strategy
would be to use the Douglas-Rachford scheme with θ′ = 1. The scheme becomes

(1−∆tA1)U
∗
i,j = (1 + ∆tA0 +∆tA2)U

n
i,j

(1−∆tA2)U
n+1
i,j = U∗

i,j −∆tA2U
n
i,j.

(5.45)
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The difference between the DR scheme with θ′ = 1
2
and θ′ = 1 is shown in Figure

5.8a and 5.8b for cases 1 and 2, respectively. The damping procedure looks to
be effective for high values of stochastic volatility. The solution, in general for all
cases, remains slightly oscillatory however around the critical region of S = K.
This is more pronounced in cases 1 and 4. To further improve results, one could
apply an upwind scheme (one-sided scheme) for a section of inner points in the
grid where the diffusion coefficient in the ν-direction is negative and maintain a
central scheme whenever it is positive. A combination of both schemes may lead
to reductions in the spatial error. De Graaf (2012) [12] a proportion of λ = 0.8,
where λ = 1 represents an entirely central scheme, yields the lowest error.
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Figure 5.8: Difference between DR scheme with θ′ = 1
2
and θ = 1 with a non-

uniform grid applied.

Some further methods to deal with payoff discontinuities have been proposed.
These include an averaging technique outlined in Heston and Zhou (2000) (pre-
viously discussed by Thomée and Wahlbin (1974)) adapted to help improve con-
vergence, translating the grid such that critical points have specific grid positions,
for example exactly on a grid point or mid-way between adjacent grid points, to
help improve accuracy as described in Tavella and Randall (2000) [43] and pro-
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jecting initial conditions under L2 onto a space spanned by a predetermined set of
basis functions (Wahlbin (1980)).

A reduction in the spatial error itself may be achieved by applying a non-uniform
grid. Table 5.4 presents results for the European call option price under the Heston
model for different grid sizes when applying the DR scheme using a non-uniform
mesh. The option price is evaluated at the point (S, ν) = (70, 0.15) as treatment
of the boundaries in the non-uniform case needs to be improved and leads to in-
accurate error valuations. If this point doesn’t lie on a specific grid point then a
Matlab interpolation function is used. The error is considerably less than in the
uniform case.

Mesh size
(NS ×NV )

DR call option price Absolute error
Uniform Non-uniform Uniform Non-uniform

(21× 11) 4.5816 4.7184 0.0756 0.0612
(41× 21) 4.6350 4.6657 0.0222 0.0085
(61× 31) 4.6467 4.6634 0.0105 0.0062
(81× 41) 4.6508 4.6611 0.0064 0.0039
(101× 51) 4.6528 4.6594 0.0044 0.0022
(121× 61) 4.6534 4.6582 0.0034 0.0010

Table 5.4: DR scheme applied with both uniform and non-uniform grids, option
price value given at point (S, ν) = (70, 0.15).
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Conclusion

This study has shed light on finite difference methods used to approximate deriva-
tives in the Heston PDE pricing European options. The focus has been on the use
of different ADI schemes to price a European call option. The advantage of ADI
schemes over traditional finite difference methods is the increased accuracy as well
as the combination of stability properties attained from the implicit scheme whilst
maintaining low computational times by limiting its use of matrix inversion.

We have introduced the topic by first motivating the idea of modeling volatility
as a stochastic variable and providing background theory on the derivation of the
Heston PDE and its semi-analytical solution. Furthermore, for completion we
have presented two further pricing methods that use Fourier transforms. Finite
difference theory was then introduced, followed by non-ADI methods including the
Explicit, Implicit and Crank-Nicolson schemes.

The Explicit FD scheme was found to be conditionally stable and a non-rigorous
stability condition for the time-step ∆t was proposed. This condition was proved
numerically as number of asset or volatility steps which violated this stability con-
dition were found to produce instability and error growth in the output grid of the
scheme. We saw the shape of the error and its slight increase around the critical
region of S = K where the payoff presents a discontinuity.

The Greeks were also evaluated and plotted for the explicit FD scheme. The
difference grids showing the variation between a given greek and the exact solution
were easily attainable as the implementation of exact Greek values followed without
much effort from the Heston exact option price solution presented by Shaw [42].

ADI methods were then introduced and this guided us onto numerical experiments.
The errors were observed to converge in all four ADI schemes presented and the
order of convergence was approx. 2 for all schemes when a uniform grid was applied.
The following task was to introduce techniques to improve the present form of the
schemes. A simplified damping technique was applied and it was seen to be effective
for large values of volatility, however was detrimental to the scheme around the
critical area of ν = 0 where it performed worse than without applying the technique.
Further techniques that could be tried are upwinding and grid shifting (see Tavella
and Randall [43] for the latter), especially to try and reduce the spurious oscillations
appearing around S = K.
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Applying a non-uniform grid allowed us to reduce the error significantly whilst
keeping computation time unchanged. It is of interest to implement further split-
ting schemes to the DR method under a non-uniform grid to see if it is the case that
all perform better than in the uniform case. Also, it is worth applying any correc-
tion techniques mentioned above to the same ADI schemes but with a non-uniform
grid. This will improve accuracy as well as stability. The way the non-uniform
grid was generated is as described in Tavella and Randall [43]. Applying a non-
uniform mesh is a non-trivial task and as such it may be rewarding to spend time
researching an effective and efficient coordinate transformation technique.

One may also try to apply Monte Carlo (MC) methods for reference. Although for
European options an exact solution is available in the case of the Heston model,
it is worth expanding to a wider range of options once the procedures for simple
European options are refined. For example barrier options, briefly described in
Appendix A, are a class of exotic options without a closed-form solution. In this
case we may use MC simulations where we rely on a risk neutral valuation and
obtain the price as the expected value of discounted payoffs. Further, one can
apply the COS method or Milstein’s method. This may be applied on other exotic
options also.

Finally, a further improvement that one may carry out on the Heston model itself
is the addition of jumps. The presence of jumps has been shown to account for
the higher than expected short term volatility observed in market data. When
considering jumps, one needs to make further assumptions such as the frequency
and size of the jump. In particular, jumps are necessary to describe short expiry
option prices and often resolve problems encountered when calibrating for the vol-
of-vol parameter. Incorporating jumps in stochastic volatility models is currently
receiving much interest, but it is not any form of focus in this study.

Case 4 presented problems due to having a small value for the vol-of-vol parameter
σ implying a convection-dominated Heston PDE. Duffy [15] claims in this case poor
performance by use of ADI schemes as was discovered during the analysis. It is
of interest to find an alternative scheme in this case, perhaps iterative FD or pure
splitting methods, and also compare results with those obtained via ADI schemes
presented.
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Appendix A

Appendix A

A.1 Details of ADI Scheme

We describe in detail the steps leading to the implementation of the Douglas-
Rachford scheme. In the main text we keep ∆t in the scheme, but for simplicity
during computational implementation we keep ∆t as part of the A matrices.

First note how the entries in the tridiagonal matrices A1 and A2 are split. We have

lower diagonal:
1

2
νjS

2
i

∆t

∆S2
− 1

2
rSi

∆t

∆S
(A.1)

main diagonal:

−νjS2
i

∆t

∆S2
− 1

2
r∆t (A.2)

upper diagonal:
1

2
νjS

2
i

∆t

∆S2
+

1

2
rSi

∆t

∆S
(A.3)

where the lower, main and upper diagonals correspond to Ui−1,j, Ui,j and Ui+1,j

respectively. Similarly the matrix A2 is split as follows

lower diagonal:
1

2
σ2νj

∆t

∆ν2
− 1

2
κ(θ − νj)

∆t

∆ν
(A.4)

main diagonal:

−σ2νj
∆t

∆ν2
− 1

2
r∆t (A.5)

upper diagonal:
1

2
σ2νj

∆t

∆ν2
+

1

2
κ(θ − νj)

∆t

∆ν
(A.6)

Then the first step of the two step scheme is

(1− θ′1A1)U
∗
i,j = (1 + A0 + (1− θ′)A1 + A2)U

n
i,j (A.7)
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⇒ U∗
i,j−θ′

(
1

2
νjS

2
i

∆t

∆S2

(
U∗
i+1,j − 2U∗

i,j + U∗
i−1,j

)
+

1

2
rSi

∆t

∆S

(
U∗
i+1,j − U∗

i−1,j

)
−1

2
r∆tU∗

i,j

)
= (1 + A0 + (1− θ′)A1 + A2)U

n
i,j

(A.8)
Rearranging the terms on the LHS we can form coefficients for U∗

i−1,j, U
∗
i,j and

U∗
i+1,j. These are given by

a1,j = − θ′

2
νjS

2
i

∆t

∆S2
+
θ′

2
rSi

∆t

∆S
(A.9a)

b1,j = 1 + θ′νjS
2
i

∆t

∆S2
+
θ′

2
r∆t (A.9b)

c1,j = − θ′

2
νjS

2
i

∆t

∆S2
− θ′

2
rSi

∆t

∆S
(A.9c)

such that we have

a1,jU
∗
i−1,j + b1,jU

∗
i,j + c1,jU

∗
i+1,j = (1 + A0 + (1− θ′)A1 + A2)U

n
i,j (A.10)

The system to be solved is then as given in the ADI implementation section.

A.2 Tridiagonal Matrix Algorithm (TDMA)

The Tridiagonal Matrix Algorithm (also known as the Thomas algorithm, named
after Llevellyn Thomas) is a form of Gaussian elimination used to solve tridiagonal
systems of equations. The algorithm is composed of two steps; the first consists
of a forward elimination sweep and the second is a result of applying backward
substitution. Consider the following tridiagonal system:

aixi−1 + bixi + cixi+1 = di, i = 1, ..., n (A.11)

which can be written in matrix form, with a1 = 0 and cn = 0, as follows

b1 c1 0 . . . . . . 0
a2 b2 c2 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
... an−1 bn−1 cn−1

0 . . . . . . 0 an bn





x1
x2
...
...

xn−1

xn


=



d1
d2
...
...

dn−1

dn


(A.12)

Now perform the following row operations to system A.12. First subtract row two
multiplied by a2 from row one multiplied by b1. We have

b1(a2x1 + b2x2 + c2x3)− a2(b1x1 + c1x2) = b1d2 − a2d1 (A.13)

Simplifying yields

(b1b2 − a2c1)x2 + b1c2x3 = b1d2 − a2d1 (A.14)
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such that x1 has been eliminated from the second equation. Similarly, we are able
to eliminate x2 using the modified second equation and the third equation. This
gives

(b1b2 − a2c1)(a3x2 + b3x3 + c3x4)− a3((b1b2 − a2c1)x2 + b1c2x3)

= (b1b2 − a2c1)d3 − a3(b1d2 − a2d1)

⇒((b1b2 − a2c1)b3 − a3b1c2)x3 + (b1b2 − a2c1)c3x4

= (b1b2 − a2c1)d3 − a3(b1d2 − a2d1)

Repeating this procedure on all n rows, one eventually arrives at the last equation
which involves the unknown xn only. The unknown xn will be embedded in a final
function which may be used to solve the modified equation for i = n− 1 etc. until
all xi are found via back subsitution. In effect we are left with the upper diagonal
system 

b′1 c′1 0 . . . . . . 0
0 b′2 c′2 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
... 0 b′n−1 c′n−1

0 . . . . . . 0 0 b′n





x1
x2
...
...

xn−1

xn


=



d′1
d′2
...
...

d′n−1

d′n


(A.15)

where

b′i = 1, i = 1, ..., n (A.16a)

c′i =

{
ci
bi
, i = 1
ci

bi−aic′i−1
, i = 2, 3, ..., n− 1

(A.16b)

d′i =

{
di
bi
, i = 1

di−aid
′
i−1

bi−aic′i−1
, i = 2, 3, ..., n− 1

(A.16c)

where the solution may then be obtained by back substitution

xn = d′n
xi = d′i − c′ixi+1, i = n− 1, n− 2, ..., 1

(A.17)

A.3 Shaw’s Approach to a Closed-Form Solution

to the Heston Model

This section provides a short summary of the approach taken, to compute the
semi-analytical solution to the Heston PDE, by Shaw [42].

A.3.1 Change of Variables

The first step is to perform the following change of variables (assume there are no
dividends): τ = T − t, x = log S + rτ and U = We−rτ (where W = W (x, ν, τ)).
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By the chain rule

∂U

∂t
= W

∂

∂τ
(e−rτ )

∂τ

∂t
+ e−rτ

(
∂W

∂τ

∂τ

∂t
+
∂W

∂x

∂x

∂t
+
∂W

∂ν

∂ν

∂t

)
(A.18a)

∂U

∂S
= e−rτ

(
∂W

∂x

∂x

∂S
+
∂W

∂ν

∂ν

∂x
+
∂W

∂τ

∂τ

∂x

)
= e−rτ 1

S

∂W

∂x
(A.18b)

∂2U

∂S2
= e−rτ ∂

∂S

(
1

S

∂W

∂x

)
= e−rτ 1

S2

(
∂2W

∂x2
− ∂W

∂x

)
(A.18c)

∂U

∂ν
= e−rτ ∂W

∂ν
(A.18d)

∂2U

∂ν2
= e−rτ ∂

2W

∂ν2
(A.18e)

∂2U

∂ν∂S
=

∂

∂ν

(
∂U

∂S

)
=

∂

∂ν

(
e−rτ 1

S

∂W

∂x

)
= e−rτ 1

S

∂2W

∂ν∂x
(A.18f)

Substituting into the Heston PDE gives us a PDE for W

∂W

∂τ
=

1

2
ν

(
∂2W

∂x2
− ∂W

∂x

)
+ρσν

∂2W

∂ν∂x
+
1

2
σ2ν

∂2W

∂ν2
+(κ(θ − ν)− λν)

∂W

∂ν
(A.19)

A.3.2 The Fourier Transform

The following step is to introduce an inverse Fourier Transform as follows

W (x, ν, τ) =
1

2π

∫ ∞

−∞
e−iwxW̃ (w, ν, τ)dw (A.20)

where the Fourier Transform is

F {W (x, ν, τ)} = W̃ (w, ν, τ) =

∫ ∞

−∞
eiwxW (x, ν, τ)dx (A.21)

Notice that at expiry, where τ = 0, we have

W̃ (w, ν, 0) =

∫ ∞

−∞
eiwxW (x, ν, 0)dx

=

∫ ∞

−∞
eiwxU(x, ν, 0)dx

=

∫ ∞

−∞
eiwxmax(ex −K, 0)dx

=

∫ ∞

log K

eiwx(ex −K)dx

=

[
1

iw + 1
e(iw+1)x − K

iw
eiwx

]∞
log K

= − Kiw+1

w2 − iw

(A.22)

where the derivation is identical to that in Section 3.5. Recall that it is necessary
to check convergence of the integral as w could be any complex number. We don’t
want unbounded growth of the exponential terms so look for them to decay as x
increases. Recall for a call option this will happen whenever Im(w) > 1.
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A.3.3 The Transformed PDE

Differentiating with respect to x becomes multiplication by −iw in the Fourier
transform. Note the following

∂W

∂τ
=

1

2π

∫ ∞

−∞
e−iwx∂W̃

∂τ
dw (A.23a)

∂W

∂x
= − iw

2π

∫ ∞

−∞
e−iwxW̃dw (A.23b)

∂2W

∂x2
= − w2

2π

∫ ∞

−∞
e−iwxW̃dw (A.23c)

∂W

∂ν
=

1

2π

∫ ∞

−∞
e−iwx∂W̃

∂ν
dw (A.23d)

∂

∂ν

(
∂W

∂x

)
= − iw

∂

∂ν

(
1

2π

∫ ∞

−∞
e−iwxW̃dw

)
= − iw

2π

∫ ∞

−∞
e−iwx∂W̃

∂ν
dw

(A.23e)

⇒ 1

2π

∫ ∞

−∞
e−iwx∂W̃

∂τ
dw = − ν

4π
(w2 − iw)

∫ ∞

−∞
e−iwxW̃dw + (κ(θ − ν)

−λν − iwρσν)
1

2π

∫ ∞

−∞
e−iwx∂W̃

∂ν
dw

+
σ2ν

4π

∫ ∞

−∞
eiwx∂

2W̃

∂ν2
dw

(A.24)

Take the Fourier transform and we have that

∂W̃

∂τ
= − 1

2
ν(w2 − iw)W̃ + (κ(θ − ν)− λν − iwρσν)

∂W̃

∂ν
+

1

2
σ2ν

∂2W̃

∂ν2
(A.25)

(where we use that F
{

∂W
∂τ

}
= ∂W̃

∂τ
).

A.3.4 The Fundamental Solution

Assume there exists a solution G(w, ν, τ) of PDE (A.25). Assume further that the
solution has the property G(w, ν, 0) = 1. The solution to the transformed PDE

with payoff condition W̃ (w, ν, 0) is then the product of the payoff condition with
G(w, ν, τ). The solution to the original PDE is then the discounted value of this
product with any coordinate transformations undone.

U =
1

2π
e−r(T−t)

∫ iwi+∞

iwi−∞
e−iwxW̃ (w, ν, 0)G(w, ν, T − t)dw (A.26)

where x = log S + r(T − t).

The next step is to find G. Lewis (2000) [30] studies the process of finding G with
more general market price of risk functions. As we are interested in the Heston
model, we find G for this specific model.

∂G

∂τ
= − 1

2
ν(w2 − iw)G+ (κ(θ − ν)− λν − iwρσν)

∂G

∂ν
+

1

2
σ2ν

∂2G

∂ν2
(A.27)
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such that G(w, ν, 0) = 1. Ansatz is G = eC(τ,w)+νD(τ,w) (we use this form for the
solution for example when dealing with bond pricing equations in affine models
also). From the payoff condition we require C(0, w) = 0 = D(0, w) in order to
satisfy G = 1 at expiry. Substituting the ansatz into the PDE (A.27) gives(
∂C

∂τ
+ ν

∂D

∂τ

)
G = − 1

2
ν(w2 − iw)G+ (κ(θ − ν)− λν − iwρσν)DG+

1

2
σ2νD2G

(A.28)
which must hold for all ν.

⇒
[
∂C

∂τ
− θκD

]
+

[
∂D

∂τ
+

1

2
(w2 − iw) + [κ+ λ+ iwρσ]D − 1

2
σ2D2

]
ν = 0

(A.29)
This yields the following two ODE’s

∂C

∂τ
= θκD (A.30a)

∂D

∂τ
=

1

2
σ2D2 −D(κ+ λ+ iwρσ)− 1

2
(w2 − iw) (A.30b)

Solve the second equation first for D, then the first for C. Express the solution in
terms of auxiliary functions d, g defined as follows

d =
√

(w2 − iw)σ2 + (κ+ λ+ iwρσ)2 (A.31a)

g =
κ+ λ+ iwρσ + d

κ+ λ+ iwρσ − d
(A.31b)

Then

D =
κ+ λ+ iwρσ + d

σ2

1− edτ

1− gedτ
(A.32a)

C =
κθ

σ2

{
(κ+ λ+ iwρσ + d)τ − 2 ln

(
1− gedτ

1− g

)}
(A.32b)

Note that it is better to perform numerical integration of the ODE for C directly as
then one can avoid any branch cut difficulties which are a result of the branch of the
complex logarithm. With this we conclude the solution of the Heston model. Recall
that we take the market price of risk λ = 0 in our computational experiments. In
order to move on to price instruments, all that is left is to compute the inverse
transform integrals.

A.3.5 The Greeks

The reason we present the solution by Shaw [42] is the simplicity in computation of
the Greeks which follows its representation. We can easily obtain delta and gamma
by multiplying the integrand in (A.26) by − iw

S
and −w2

S2 , respectively.
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A.4 General Stability Approach in the Explicit

Scheme

A.4.1 Von Neumann Stability

Consider the general IBVP in two space dimensions with time independent coeffi-
cients and boundary conditions given as follows

∂U

∂t
= b1(x, y)

∂U

∂x
+ b2(x, y)

∂U

∂y
+ a1(x, y)

∂2U

∂x2
+ a2(x, y)

∂2U

∂y2
− c(x, y)U ,

∀(x, y, t) ∈ (0, T ]× Ω

U(x, y; 0) = g(x, y), ∀(x, y) ∈ Ω

U(x, y; t) = 0, ∀(x, y) ∈ (0, T ]× δΩ
(A.33)
where c is non-negative, and a1, a2 are striclty positive. We remark that the spatial
domain is defined as in the main text, namely we consider Ω = (Xmin, Xmax) ×
(Ymin, Ymax). Note that the discretized form of equation A.33 is

Un+1
i,j = Un

i,j+∆t

(
b1(x, y)

Un
i+1,j − Un

i−1,j

2∆x
+ b2(x, y)

Un
i,j+1 − Un

i,j−1

2∆y

+ a1(x, y)
Un
i+1,j − 2Un

i,j + Un
i−1,j

∆x2
+ a2(x, y)

Un
i,j+1 − 2Un

i,j + Un
i,j−1

∆y2
− c(x, y)Un

i,j

)
(A.34)

Following the Von Neumann stability approach, let p and q denote spatial indices
(instead of i,j as we reserve i to denote the imaginary unit i =

√
−1) and let

Un
p,q = ānei(pkx∆x+qky∆y). Substituting this into equation (A.34) gives (dropping

subscripts in coefficients for notational convenience)

ā =

[
1− 2∆t

∆x2
a1 −

2∆t

∆y2
a2 − c∆t

]
+

[
a1

∆t

∆x2
− b1

∆t

2∆x

]
e−ikx∆x

+

[
b1

∆t

2∆x
+ a1

∆t

∆x2

]
eikx∆x +

[
a2

∆t

∆y2
− b2

∆t

2∆y

]
e−iky∆y

+

[
b2

∆t

2∆y
+ a2

∆t

∆y2

] (A.35)

m

ā− 1 = a1
∆t

∆x2
[
e−ikx∆x − 2 + eikx∆x

]
+ a2

∆t

∆y2
[
e−iky∆y − 2 + eiky∆y

]
+ b1

∆t

2∆x

[
eikx∆x − e−ikx∆x

]
+ b2

∆t

2∆y

[
eiky∆y − e−iky∆y

]
− c∆t

(A.36)

Using the following useful result

eikx∆x + e−ikx∆x − 2 = − 4 sin2

(
1

2
kx∆x

)
(A.37)
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we have

ā = 1− c∆t− 4

[
∆t

∆x2
a1 sin

2

(
1

2
kx∆x

)
+

∆t

∆y2
a2 sin

2

(
1

2
ky∆y

)]
+ i

[
b1

∆t

∆x
sin (kx∆x) + b2

∆t

∆y
sin (ky∆y)

] (A.38)

Note that since the amplification is a complex number, the finite difference ap-
proximation will affect both the amplitude and phase of the oscillatory solution.
Now, the absolute value of ā is the square root of the product of ā with its complex
conjugate. This implies

|ā|2=
(
1− c∆t− 4

[
∆t

∆x2
a1 sin

2

(
1

2
kx∆x

)
+

∆t

∆y2
a2 sin

2

(
1

2
ky∆y

)])2

+

[
b1

∆t

∆x
sin (kx∆x) + b2

∆t

∆y
sin (ky∆y)

]2 (A.39)

The necessary and sufficient Von Nuemann condition for stability is |ā|≤ 1. Recall
that c is non-negative. Further assume that a1, a2 > 0. Then the first term in the
equation above is ≤ 1, and noting further that the maximum value sine squared
function can take with the given arguments is 1, we have

|ā|2 ≤ 1 + ∆t2
(
b1
∆x

+
b2
∆y

)2

⇒ |ā|≤ 1 +
1

2
∆t2

(
b1
∆x

+
b2
∆y

)2

+O(∆t2)

⇒ |ā|≤ 1 +O(∆t2)

(A.40)

where the last line is a result of TSE. So the Explicit FD scheme is conditionally
stable.

A.4.2 The Truncation Error and its Consistency Implica-
tions

The truncation error in the Explicit FD scheme is given by

τ(x, y, t) :=
∆+tu(x, y, t)

∆t
− Lu(x, y, t)

=
∆+tu(x, y, t)

∆t
− b1(x, y)

δxu(x, y, t)

2∆x
− b2(x, y)

δyu(x, y, t)

2∆y

− a1(x, y)
δ2xu(x, y, t)

∆x2
− a2(x, y)

δ2yu(x, y, t)

∆y2
+ c(x, y)u(x, y, t)

(A.41)
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We now use TSE to obtain

τ(x, y, t) =
ut∆t+

1
2
utt∆t

2 + 1
6
uttt∆t

3 +O(∆t4)

∆t
− b1(x, y)

ux∆x+
1
6
uxxx∆x

3 +O(∆x5)

∆x

− b2(x, y)
uy∆y +

1
6
uyyy∆y

3 +O(∆y5)

∆y
− a1(x, y)

uxx∆x
2 + 1

12
uxxxx∆x

4 +O(∆x6)

∆x2

− a2(x, y)
uyy∆y

2 + 1
12
uyyyy∆y

4 +O(∆y6)

∆y2
+ c(x, y)u(x, y, t)

= ut − [b1(x, y)ux + b2(x, y)uy + a1(x, y)uxx + a2(x, y)uyy − c(x, y)u(x, y, t)]

+O(∆t+∆x2 +∆y2)
(A.42)
where ut, utt and uttt are the first, second and third derivatives of u with respect to
time t, respectively. Similar definitions apply for spatial variables x and y. It’s clear
that the truncation error is first order accurate in time, and second order accurate
in space. In addition, since τ(x, y, t) → 0 as ∆t, ∆x, ∆y → 0, the Explicit FD
scheme is consistent.

A.4.3 Convergence

The error of the Explicit FD scheme at the node (xi, yj, tn) is given by

eni,j = Un
i,j − u(xi, yj, tn) (A.43)

where Un
i,j denotes the approximation to the exact solution u(xi, yj, tn). Since U

n
i,j

is the solution to the difference equation it has no truncation error, however uni,j
leaves the residual truncation τni,j. Applying the truncation formula to the error as
defined above, we have

τeni,j = − τ(xi, yj, tn)

=
∆+te

n
i,j

∆t
− Leni,j

(A.44)

⇒

en+1
i,j = eni,j

(
1−∆tc(x, y)− 2a1(x, y)

∆t

∆x2
− 2a2(x, y)

∆t

∆y2

)
−∆tτ(xi, yj, tn)

+ eni−1,j

(
a1(x, y)

∆t

∆x2
− b1(x, y)

∆t

2∆x

)
+ eni+1,j

(
a1(x, y)

∆t

∆x2
+ b1(x, y)

∆t

2∆x

)
+ eni,j−1

(
a2(x, y)

∆t

∆y2
− b2(x, y)

∆t

2∆y

)
+ eni,j+1

(
a2(x, y)

∆t

∆y2
+ b2(x, y)

∆t

2∆y

)
(A.45)
For numerical stability, we require all coefficients linearly associated with the error
terms e to be non-negative. As such, the followsing conditions are required

|b1(x, y)
1
∆x
a1(x, y)

≤ 2,
|b2(x, y)|
1
∆y
a2(x, y)

≤ 2, ∆tc(x, y) + 2a1(x, y)
∆t

∆x2
+ 2a2(x, y)

∆t

∆y2

for i = 0, 1, ..., NS, j = 0, 1, ..., NV . Now note that

|en+1
i,j |≤ (1− c(x, y))max

{
|eni−1,j|, |eni+1,j|, |eni,j−1|, |eni,j+1|, |eni,j|

}
+∆tL(∆t+∆S2 +∆ν2)

(A.46)
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and define

En = max
0≤i≤NS ,0≤j≤NV

|eni,j| (A.47a)

c = max
0≤i≤NS ,0≤j≤NV

|c(x, y)| (A.47b)

such that
En+1 ≤ En(1 + ∆tc) + L(∆t+∆x2 +∆y2) (A.48)

By induction

En ≤ E0(1 + ∆tc)n +∆tL(∆t+∆x2 +∆y2)
n−1∑
k=0

(1 + ∆tc)k

=
∆tL(∆t+∆x2 +∆y2)((1 + ∆tc)n − 1)

∆tc
≤ en∆tcL̃(∆t+∆x2 +∆y2)

(A.49)

⇒ convergence.

A.5 Barrier Options

Barrier options are European vanilla options with the added feature of a barrier,
which is a set value of the underlying that when crossed alters the contract. In the
case of European options the payoff depends only on the value of the underlying at
maturity and thus these options are known as path-independent. Barrier options
are path-dependent as their value can be affected during the life-cycle of the option.

There are two types of barrier options; knock-out and knock-in. If the barrier is
crossed a knock-out option means the option ceases to exist whereas a knock-in
option would bring the option into existence. Barrier options are cheaper than
vanilla options and thus serve as a way of hedging when the trader believes the
stock will not make very large movements. Each type of barrier option can be sub-
divided into two further categories; knock-out options can be either down-and-out
or up-and-out and knock-in options can be either down-and-in or up-and-in. This
section focuses on knock-out call options.

Down-and-out call: The barrier would be placed below the current spot price
and if it is triggered during the lifetime of the option then the option becomes
worthless. If maturity is reached without triggering the barrier then the payoff is
the same as a vanilla European call. We thus have

Payoff =

{
maxSt −K if St > B, ∀0 ≤ t ≤ T ,
0 otherwise

where St denotes the price of the underlying at time t, K the strike and B is the
barrier level as agreed on the initial contract.

Up-and-out call: The barrier in this case is placed above the current spot price
of the underlying. If it is triggered during the lifetime of the option then the option
becomes worthless. In this case the payoff is as follows

Payoff =

{
maxSt −K if St < B, ∀0 ≤ t ≤ T ,
0 otherwise
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We now focus on the down-and-out call option. The spatial non-uniform FD dis-
cretization can be adapted to cope with barrier options. Let B ∈ (0, K) denote
the barrier as before, then the region of interest becomes [B, Smax]× [0, νmax]. The
boundary conditions (4.3) and (4.5) change to U(B, ν, t) = 0, (0 ≤ t ≤ T ), and
U(S, νmax, t) = S − B, (0 ≤ t ≤ T ), respectively. The equidistant points ψi in the
S-direction are now calculated as follows

ξi = sinh−1

(
B −K

c

)
+ i∆ξ (A.50)

where 0 ≤ i ≤ NS. Each step is the evaluated via

∆ξ =
1

NS

(
sinh−1

(
S −K

c

)
− sinh−1

(
B −K

c

))
(A.51)

The points in the ν-direction are as before. Only a handful of small changes are
required to implement a down-and-out call in place of the vanilla call option. There
exists a semi-analytical formula derived by Lipton (2001) for the price of double1

barrier options in the Heston model as long as the correlation between the under-
lying and its volatility is zero and the domestic rate is the same as the foreign rate
(which for our purposes has been the case throughout the dissertation).

1In this case there are two distinct barriers within which the option may fluctuate.
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